Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 9830, 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37330585

ABSTRACT

Narrow-linewidth lasers are in extensive demand for numerous cutting-edge applications. Such lasers operating at the visible range are of particular interest. Self-injection locking of a laser diode frequency to a high-Q whispering gallery mode is an effective and universal way to achieve superior laser performance. We demonstrate ultranarrow lasing with less than 10 Hz instantaneous linewidth for 20 [Formula: see text]s averaging time at 638 nm using a Fabry-Pérot laser diode locked to a crystalline MgF[Formula: see text] microresonator. The linewidth measured with a [Formula: see text]-separation line technique that characterizes 10 ms stability is as low as 1.4 kHz. Output power exceeds 80 mW. Demonstrated results are among the best for visible-range lasers in terms of linewidth combined with solid output power. We additionally report the first demonstration of a gain-switched regime for such stabilized Fabry-Pérot laser diode showing a high-contrast visible frequency comb generation. Tunable linespacing from 10 MHz to 3.8 GHz is observed. We demonstrated that the beatnote between the lines has sub-Hz linewidth and experiences spectral purification in the self-injection locking regime. This result might be of special importance for spectroscopy in the visible range.


Subject(s)
Lasers, Semiconductor , Light , Injections
2.
Opt Express ; 31(1): 313-327, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36606969

ABSTRACT

Self-injection locking of a diode laser to a high-quality-factor microresonator is widely used for frequency stabilization and linewidth narrowing. We constructed several microresonator-based laser sources with measured instantaneous linewidths of 1 Hz and used them for investigation and implementation of the self-injection locking effect. We studied analytically and experimentally the dependence of the stabilization coefficient on tunable parameters such as locking phase and coupling rate. It was shown that precise control of the locking phase allows fine-tuning of the generated frequency from the stabilized laser diode. We also showed that it is possible for such laser sources to realize fast continuous and linear frequency modulation by injection current tuning inside the self-injection locking regime. We conceptually demonstrate coherent frequency-modulated continuous wave LIDAR over a distance of 10 km using such a microresonator-stabilized laser diode in the frequency-chirping regime and measure velocities as low as sub-micrometer per second in the unmodulated case. These results could be of interest to cutting-edge technology applications such as space debris monitoring and long-range object classification, high-resolution spectroscopy, and others.

3.
Nat Commun ; 10(1): 1623, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30944332

ABSTRACT

The original version of this Article contained an error in the first sentence of the Acknowledgements, which incorrectly read 'This publication was supported by Contract HR0011-15-C-0055 (DODOS) from the Defense Advanced Research Projects Agency (DARPA), Defense Sciences Office (DSO).' The correct version states 'Microsystems Technology Office (MTO)' in place of 'Defense Sciences Office (DSO)'. This has been corrected in both the PDF and HTML versions of the Article.

4.
Nat Commun ; 10(1): 680, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30737384

ABSTRACT

Microcombs provide a path to broad-bandwidth integrated frequency combs with low power consumption, which are compatible with wafer-scale fabrication. Yet, electrically-driven, photonic chip-based microcombs are inhibited by the required high threshold power and the frequency agility of the laser for soliton initiation. Here we demonstrate an electrically-driven soliton microcomb by coupling a III-V-material-based (indium phosphide) multiple-longitudinal-mode laser diode chip to a high-Q silicon nitride microresonator fabricated using the photonic Damascene process. The laser diode is self-injection locked to the microresonator, which is accompanied by the narrowing of the laser linewidth, and the simultaneous formation of dissipative Kerr solitons. By tuning the laser diode current, we observe transitions from modulation instability, breather solitons, to single-soliton states. The system operating at an electronically-detectable sub-100-GHz mode spacing requires less than 1 Watt of electrical power, can fit in a volume of ca. 1 cm3, and does not require on-chip filters and heaters, thus simplifying the integrated microcomb.

SELECTION OF CITATIONS
SEARCH DETAIL
...