Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plant Sci ; 160(5): 925-932, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11297789

ABSTRACT

Defense responses of alfalfa roots to the pathogenic fungus Rhizoctonia solani were reduced significantly in roots simultaneously infected with the vesicular arbuscular mycorrhizal (AM) fungus Glomus intraradices. R. solani induced five- to tenfold increases in the steady-state levels of chalcone isomerase and isoflavone reductase mRNAs a doubling of root peroxidase activity and a marked autofluorescence in the infected tissue. These changes were inhibited by the presence of G. intraradices. Interestingly, germination of G. intraradices spores and hyphal elongation were sensitive to low concentrations (2 µM) of medicarpin-3-O-glucoside, an isoflavonoid phytoalexin that accumulated both in roots colonized by the pathogenic fungus as well as in AM-treated roots receiving high P, where no colonization by the beneficial fungus occurred. These data support the hypothesis that during early stages of colonization by G. intraradices, suppression of defense-related properties is associated with the successful establishment of AM symbiosis.

2.
Transgenic Res ; 9(2): 137-44, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10951697

ABSTRACT

Threonine, lysine, methionine, and tryptophan are essential amino acids for humans and monogastric animals. Many of the commonly used diet formulations, particularly for pigs and poultry, contain limiting amounts of these amino acids. One approach for raising the level of essential amino acids is based on altering the regulation of their biosynthetic pathways in transgenic plants. Here we describe the first production of a transgenic forage plant, alfalfa (Medicago sativa L.) with modified regulation of the aspartate-family amino acid biosynthetic pathway. This was achieved by over-expressing the Escherichia coli feedback-insensitive aspartate kinase (AK) in transgenic plants. These plants showed enhanced levels of both free and protein-bound threonine. In many transgenic plants the rise in free threonine was accompanied by a significant reduction both in aspartate and in glutamate. Our data suggest that in alfalfa, AK might not be the only limiting factor for threonine biosynthesis, and that the free threonine pool in this plant limits its incorporation into plant proteins.


Subject(s)
Aspartate Kinase/genetics , Medicago sativa/genetics , Threonine/biosynthesis , Aspartate Kinase/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression , Medicago sativa/metabolism , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism , Protein Binding , Recombinant Proteins/metabolism
3.
Mol Gen Genet ; 263(4): 674-80, 2000 May.
Article in English | MEDLINE | ID: mdl-10852490

ABSTRACT

The RbcS multigene family of hexaploid (bread) wheat, Triticum aestivum (genome BBAADD), which encodes the small subunit of Rubisco, comprises at least 22 genes. Based on their 3' non-coding sequences, these genes have been classified into four subfamilies (SFs), of which three (SF-2, SF-3 and SF-4) are located on chromosomes of homoeologous group 2 and one (SF-1) on homoeologous group 5. In the present study we hybridized three RbcS subfamily-specific probes (for SF-1, SF-2 and SF-3) to total DNA digested with four restriction enzymes and analyzed the RFLP patterns of these subfamilies in eight diploid species of Aegilops and Triticum, and in two tetraploid and one hexaploid species of wheat (the diploid species are the putative progenitors of the polyploid wheats). The three subfamilies varied in their level of polymorphism, with SF-2 being the most polymorphic in all species. In the diploids, the order of polymorphism was SF-2 > SF-3 > SF-1, and in the polyploids SF-2 > SF-1 > SF-3. The RbcS genes of the conserved SF-1 were previously reported to have the highest expression levels in all the wheat tissues studied, indicating a negative correlation between polymorphism and gene expression. Among the diploids, the species with the D and the S genomes were the most polymorphic and the A-genome species were the least polymorphic. The polyploids were less polymorphic than the diploids. Within the polyploids, the A genome was somewhat more polymorphic than the B genome, while the D genome was the most conserved. Among the diploid species with the A genome, the RFLP pattern of T. urartu was closer to that of the A genome of the common wheat cultivar Chinese Spring (CS) than to that of T. monococcum. The pattern in Ae. tauschii was similar to that of the D genome of CS. Only partial resemblance was found between the RFLP patterns of the species with the S genome and the B genome of CS.


Subject(s)
Chromosome Mapping , Multigene Family , Polymorphism, Restriction Fragment Length , Ribulose-Bisphosphate Carboxylase/genetics , Triticum/classification , Triticum/genetics , DNA Probes , Diploidy , Genes, Plant , Phylogeny , Polyploidy , Species Specificity , Triticum/enzymology
4.
Mol Plant Microbe Interact ; 12(11): 1000-7, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10550896

ABSTRACT

The development of leaf disease symptoms and the accumulation of pathogenesis-related (PR) proteins were monitored in leaves of tobacco (Nicotiana tabacum cv. Xanthinc) plants colonized by the arbuscular mycorrhizal fungus Glomus intraradices. Leaves of mycorrhizal plants infected with the leaf pathogens Botrytis cinerea or tobacco mosaic virus showed a higher incidence and severity of necrotic lesions than those of nonmycorrhizal controls. Similar plant responses were obtained at both low (0.1 mM) and high (1.0 mM) nutritional P levels and with mutant plants (NahG) that are unable to accumulate salicylic acid. Application of PR-protein activators induced PR-1 and PR-3 expression in leaves of both nonmycorrhizal and mycorrhizal plants; however, accumulation and mRNA steady-site levels of these proteins were lower, and their appearance delayed, in leaves of the mycorrhizal plants. Application of 0.3 mM phosphate to the plants did not mimic the delay in PR expression observed in the mycorrhizal tobacco. Together, these data strongly support the existence of regulatory processes, initiated in the roots of mycorrhizal plants, that modify disease-symptom development and gene expression in their leaves.

5.
Proc Natl Acad Sci U S A ; 94(10): 5467-72, 1997 May 13.
Article in English | MEDLINE | ID: mdl-11038545

ABSTRACT

Transcripts for two genes expressed early in alfalfa nodule development (MsENOD40 and MsENOD2) are found in mycorrhizal roots, but not in noncolonized roots or in roots infected with the fungal pathogen Rhizoctonia solani. These same two early nodulin genes are expressed in uninoculated roots upon application of the cytokinin 6-benzylaminopurine. Correlated with the expression of the two early nodulin genes, we found that mycorrhizal roots contain higher levels of trans-zeatin riboside than nonmycorrhizal roots. These data suggest that there may be conservation of signal transduction pathways between the two symbioses-nitrogen-fixing nodules and phosphate-acquiring mycorrhizae.

7.
Theor Appl Genet ; 85(5): 568-76, 1993 Jan.
Article in English | MEDLINE | ID: mdl-24195931

ABSTRACT

The two cDNAs coding for the cytosolic (cyt) and the chloroplast-located (chl) Cu,Zn superoxide dismutases (SODs) of tomato (Perl-Treves et al. 1988) were cloned into respective binary vectors and mobilized into Agrobacterium strains. Potato tuber discs were infected with either of the two agrobacterial strains and cultured on selective medium containing kanaymcin. The integration of either of the cyt or the chl SOD transgenes was verified by Southern-blot hybridization. The enzymatic activity of the additional tomato chl Cu,Zn SOD could be distinguished from endogenous SOD activity since the latter isozyme migrated faster on SOD-activity gels. Several transgenic potato lines harboring either the cyt or the chl SOD genes of tomato showed elevated tolerance to the superoxide-generating herbicide paraquat (methyl viologen). After exposure of shoots to paraquat, tolerance was recorded either by scoring symptoms visually or by measurements of photosynthesis using the photoacoustic method. Root cultures from transgenic lines that harbored the additional cyt Cu,Zn SOD gene of tomato were tolerant to methyl viologen up to 10(-5) M; a lower tolerance was recorded in roots of transgenic lines that expressed the additional chl Cu,Zn SOD of tomato.

8.
Theor Appl Genet ; 83(3): 385-91, 1992 Jan.
Article in English | MEDLINE | ID: mdl-24202523

ABSTRACT

Three different 3' noncoding sequences of wheat rubisco small subunit (SSU) genes (RbcS) were used as probes to identify the gene members of different RbcS subfamilies in the common wheat cultivar Chinese Spring (CS). All genes of the wheat RbcS multigene family were previously assigned to the long arm of homoeologous group 5 and to the short arm of homoeologous group 2 chromosomes of cv CS. Extracted DNA from various aneuploids of these homoeologous groups was digested with four restriction enzymes and hybridized with three different 3' noncoding sequences of wheat SSU clones. All RbcS genes located on the long arm of homoeologous group 5 chromosomes were found to comprise a single subfamily, while those located on the short arm of group 2 comprised three subfamilies. Each of the ancestral diploid genomes A, B, and D has at least one representative gene in each subfamily, suggesting that the divergence into subfamilies preceded the differentiation into species. This divergence of the RbcS genes, which is presumably accompanied by a similar divergence in the 5' region, may lead to differential expression of various subfamilies in different tissues and in different developmental stages, in response to different environmental conditions. Moreover, members of one subfamily that belong to different genomes may have diverged also in the coding sequence and, consequently, code for distinguishable SSU. It is assumed that such utilization of the RbcS multigene family increases the adaptability and phenotypic plasticity of common wheat over its diploid progenitors.

9.
Theor Appl Genet ; 81(1): 98-104, 1991 Jan.
Article in English | MEDLINE | ID: mdl-24221165

ABSTRACT

The genes coding for the Rubisco small subunit (SSU) and for the α-subunit of the Rubisco-binding protein were located to chromosome arms of common wheat. HindIII-digested total DNA from the hexaploid cultivar Chinese Spring and from ditelosomic and nullisomic-tetrasomic lines was probed with these two genes, whose chromosomal location was deduced from the disappearance of or from changes in the relative intensity of the relevant band(s). The Rubisco SSU pattern consisted of 14 bands, containing at least 21 different types of DNA fragments, which were allocated to two homoeologous groups: 15 to the short arm of group 2 chromosomes (4 to 2AS, 7 to 2BS, and 4 to 2DS) and 6 to the long arm of group 5 chromosomes (2 on each of arms 5AL, 5BL, and 5DL). The pattern of the Rubisco-binding protein consisted of three bands, each containing one type of fragment. These fragments were located to be on the short arm of group 2 chromosomes. The restriction fragment length polymorphism (RFLP) patterns of several hexaploid and tetraploid lines were highly conserved, whereas the patterns of several of their diploid progenitors were more variable. The variations found in the polyploid species were mainly confined to the B genome. The patterns of the diploids T. monococcum var. urartu and Ae. squarrosa were similar to those of the A and D genome, respectively, in polyploid wheats. The pattern of T. monococcum var. boeoticum was different from the patterns of the A genome, and the patterns of the diploids Ae. speltoides, Ae. longissima, and Ae. Searsii differed from that of the B genome.

10.
Mol Gen Genet ; 218(2): 289-92, 1989 Aug.
Article in English | MEDLINE | ID: mdl-2506426

ABSTRACT

A streptomycin resistant Nicotiana plastome mutant, X/strR6, was subjected to molecular analysis. In this mutant, a single nucleotide transition, C----T, in the chloroplast gene for ribosomal protein S12 alters codon 90 from proline to serine while the nucleotide sequence of the chloroplast 16 S rRNA gene is identical to that of the wild type. Mutant X/strR6 thus differs from several previously reported streptomycin resistant chloroplast mutants which are altered in the gene for 16 S rRNA.


Subject(s)
Chloroplasts/drug effects , Nicotiana/genetics , Plant Proteins/genetics , Plants, Toxic , Ribosomal Proteins/genetics , Streptomycin/pharmacology , Base Sequence , Cloning, Molecular , Codon , Drug Resistance/genetics , Exons , Mutation , Proline/genetics , Serine/genetics , Nicotiana/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...