Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
J. venom. anim. toxins incl. trop. dis ; 25: e20190008, 2019. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1020026

ABSTRACT

Visceral leishmaniasis is a complex neglected tropical disease caused by Leishmania donovani complex. Its current treatment reveals strong limitations, especially high toxicity. In this context, natural products are important sources of new drug alternatives for VL therapy. Therefore, the antileishmanial and immunomodulatory activity of compounds isolated from Nectandra oppositifolia (Lauraceae) was investigated herein. Methods: The n-hexane extract from twigs of N. oppositifolia were subjected to HPLC/HRESIMS and bioactivity-guided fractionation to afford compounds 1 and 2 which were evaluated in vitro against Leishmania (L.) infantum chagasi and NCTC cells. Results: The n-hexane extract displayed activity against L. (L.) infantum chagasi and afforded isolinderanolide E (1) and secosubamolide A (2), which were effective against L. (L.) infantum chagasi promastigotes, with IC50 values of 57.9 and 24.9 µM, respectively. Compound 2 was effective against amastigotes (IC50 = 10.5 µM) and displayed moderate mammalian cytotoxicity (CC50 = 42 µM). The immunomodulatory studies of compound 2 suggested an anti-inflammatory activity, with suppression of IL-6, IL-10, TNF with lack of nitric oxide. Conclusion: This study showed the antileishmanial activity of compounds 1 and 2 isolated from N. oppositifolia. Furthermore, compound 2 demonstrated an antileishmanial activity towards amastigotes associated to an immunomodulatory effect.(AU)


Subject(s)
Biological Products , Lauraceae , Immunomodulation , Leishmaniasis, Visceral , Leishmania donovani , In Vitro Techniques
2.
PLoS Negl Trop Dis ; 11(1): e0005281, 2017 01.
Article in English | MEDLINE | ID: mdl-28045892

ABSTRACT

BACKGROUND: The leishmanicidal action of tricyclic antidepressants has been studied and evidences have pointed that their action is linked to inhibition of trypanothione reductase, a key enzyme in the redox metabolism of pathogenic trypanosomes. Cyclobenzaprine (CBP) is a tricyclic structurally related to the antidepressant amitriptyline, differing only by the presence of a double bond in the central ring. This paper describes the effect of CBP in experimental visceral leishmaniasis, its inhibitory effect in trypanothione reductase and the potential immunomodulatory activity. METHODOLOGY/PRINCIPAL FINDINGS: In vitro antileishmanial activity was determined in promastigotes and in L. infantum-infected macrophages. For in vivo studies, L. infantum-infected BALB/c mice were treated with CBP by oral gavage for five days and the parasite load was estimated. Trypanothione reductase activity was assessed in the soluble fraction of promastigotes of L. infantum. For evaluation of cytokines, L. infantum-infected macrophages were co-cultured with BALB/c splenocytes and treated with CBP for 48 h. The supernatant was analyzed for IL-6, IL-10, MCP-1, IFN-γ and TNF-α. CBP demonstrated an IC50 of 14.5±1.1µM and an IC90 of 74.5±1.2 µM in promastigotes and an IC50 of 12.6±1.05 µM and an IC90 of 28.7±1.3 µM in intracellular amastigotes. CBP also reduced the parasite load in L. infantum-infected mice by 40.4±10.3% and 66.7±10.5% in spleen at 24.64 and 49.28 mg/kg, respectively and by 85.6±5.0 and 89.3±4.8% in liver at 24.64 and 49.28mg/kg, after a short-term treatment. CBP inhibited the trypanothione reductase activity with a Ki of 86 ± 7.7 µM and increased the ROS production in promastigotes. CBP inhibited in 53% the production of IL-6 in infected macrophages co-culture. CONCLUSION/SIGNIFICANCE: To the best of our knowledge, this study is the first report of the in vivo antileishmanial activity of the FDA-approved drug CBP. Modulation of immune response and induction of oxidative stress in parasite seem to contribute to this efficacy.


Subject(s)
Amitriptyline/analogs & derivatives , Antiprotozoal Agents/administration & dosage , Leishmania infantum/drug effects , Leishmaniasis, Visceral/drug therapy , Reactive Oxygen Species/metabolism , Amitriptyline/administration & dosage , Animals , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Leishmania infantum/genetics , Leishmania infantum/metabolism , Leishmaniasis, Visceral/genetics , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Mice , Mice, Inbred BALB C , Parasite Load , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
3.
J Nat Prod ; 79(9): 2202-10, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27586460

ABSTRACT

Synthetic analogues of marine sponge guanidine alkaloids showed in vitro antiparasitic activity against Leishmania (L.) infantum and Trypanosoma cruzi. Guanidines 10 and 11 presented the highest selectivity index when tested against Leishmania. The antiparasitic activity of 10 and 11 was investigated in host cells and in parasites. Both compounds induced depolarization of mitochondrial membrane potential, upregulation of reactive oxygen species levels, and increased plasma membrane permeability in Leishmania parasites. Immunomodulatory assays suggested an NO-independent effect of guanidines 10 and 11 on macrophages. The same compounds also promoted anti-inflammatory activity in L. (L.) infantum-infected macrophages cocultived with splenocytes, reducing the production of cytokines MCP-1 and IFN-γ. Guanidines 10 and 11 affect the bioenergetic metabolism of Leishmania, with selective elimination of parasites via a host-independent mechanism.


Subject(s)
Guanidines/chemical synthesis , Leishmania infantum/drug effects , Porifera/chemistry , Trypanosoma cruzi/drug effects , Alkaloids/pharmacology , Animals , Guanidines/chemistry , Guanidines/pharmacology , Marine Biology , Molecular Structure , Nitric Oxide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...