Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry (Mosc) ; 64(10): 1128-37, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10561559

ABSTRACT

The initial rates of ATP hydrolysis catalyzed by Fo x F1 (bovine heart submitochondrial particles) preincubated in the presence of Pi for complete activation of the oligomycin-sensitive ATPase were measured as a function of ATP, Mg2+, and Mg x ATP concentrations. The results suggest the mechanism in which Mg x ATP complex is the true substrate of the ATPase and the second Mg2+ bound at a specific pH-dependent site is needed for the catalysis. Simple hyperbolic Michaelis--Menten dependences of the reaction rate on the substrate (Mg x ATP) and activating Mg2+ were found. In contrast to the generally accepted view, no inhibition of ATPase by free Mg2+ was found. Inhibition of the reaction by free ATP is due to a decrease of free Mg2+ needed for the catalysis. In the presence of both Ca2+ and Mg2+ the kinetics of ATP hydrolysis suggest that the Ca x ATP complex is neither hydrolyzed nor competes with Mg x ATP, and free Ca2+ does not affect the hydrolysis of Mg x ATP complex. A crucial role of free Mg2+ in the time-dependent inhibition of ATPase by azide is shown. The dependence of apparent Km for Mg x ATP on saturation of the Mg2+-specific site suggests the formal ping-pong mechanism in which bound Mg2+ participates in the overall reaction after dissociation of one product (most likely Pi) thus promoting either release of ADP (catalytic turnover) or slow isomerization of the enzyme--product complex (formation of the dead-end ADP(Mg2+)-inhibited enzyme). The rate of Mg x ATP hydrolysis only slightly depends on pH at saturating Mg2+. In the presence of limited amounts of free Mg2+ the pH dependence of the initial rate corresponds to the titration of a single group with pKa = 7.5. The simple competition between H+ and activating Mg2+ was observed. The specific role of Mg2+ as a coupling cation for energy transduction in Fo x F1-ATPase is discussed.


Subject(s)
Adenosine Triphosphate/metabolism , Magnesium/metabolism , Mitochondria, Heart/enzymology , Proton-Translocating ATPases/metabolism , Animals , Cattle , Hydrolysis , Kinetics , Mitochondria, Heart/metabolism , Protein Binding , Proton-Translocating ATPases/antagonists & inhibitors , Submitochondrial Particles/enzymology , Submitochondrial Particles/metabolism , Substrate Specificity
2.
Biochemistry (Mosc) ; 64(10): 1176-85, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10561566

ABSTRACT

Initial rates of succinate-dependent ATP synthesis catalyzed by submitochondrial particles from bovine heart substoichiometrically coupled with oligomycin were found to have hyperbolic dependencies on contents of Mg x ADP, free Mg2+, and phosphate. The results suggest that Mg x ADP complex and free phosphate are true substrates of the enzyme; and an unordered ternary complex of Fo x F1-ATPase, Mg x ADP, and phosphate is generated during the catalysis. The presence of free Mg2+ is required for the reaction. Mg2+ was a noncompetitive activator of ATP synthesis relative to Mg x ADP and a competitive activator relative to phosphate. The decrease in steady-state values of Deltamu(H)+ (by the inhibition of succinate oxidase with malonate) results in the decreased value of Vmax and in a slight decrease in Km for the substrates and Mg2+ without changes in affinity for the substrates. Based on these results, a kinetic scheme of ATP synthesis is proposed.


Subject(s)
Adenosine Triphosphate/biosynthesis , Mitochondria, Heart/enzymology , Proton-Translocating ATPases/metabolism , Adenosine Diphosphate/metabolism , Animals , Catalysis , Cattle , Kinetics , Submitochondrial Particles/enzymology , Substrate Specificity
3.
FEBS Lett ; 448(1): 123-6, 1999 Apr 01.
Article in English | MEDLINE | ID: mdl-10217423

ABSTRACT

The ADP(Mg2+)-deactivated, azide-trapped F0 x F1-ATPase of coupled submitochondrial particles is capable of ATP synthesis being incapable of ATP hydrolysis and ATP-dependent delta muH+ generation [FEBS Lett. (1995) 366, 29-32]. This puzzling phenomenon was studied further. No ATPase activity of the submitochondrial particles catalyzing succinate-supported oxidative phosphorylation in the presence of azide was observed when ATP was added to the assay mixture after an uncoupler. Rapid ATP hydrolysis was detected in the same system when ATP followed by an uncoupler was added. Less than 5% of the original ATPase activity was seen when the reaction (assayed with ATP-regenerating system) was initiated by the addition of ATP to the azide-trapped coupled particles oxidizing succinate either in the presence or in the absence of the uncoupler. High ATP hydrolytic activity was revealed when the reaction was started by the simultaneous addition of the ATP plus uncoupler to the particles generating delta muH+. The energy-dependent conversion of the enzyme into latent uncoupler-activated ATPase was prevented by free ADP (Ki approximately 20 microM) and was greatly enhanced after multiple turnovers in oxidative phosphorylation. The results suggest that the catalytic properties of F0 x F1 are delta muH+-dependent which is in accord with our hypothesis on different conformational states of the enzyme participating in ATP synthesis or hydrolysis.


Subject(s)
Mitochondria/enzymology , Proton-Translocating ATPases/metabolism , Catalysis , Energy Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...