Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1203243, 2023.
Article in English | MEDLINE | ID: mdl-37342567

ABSTRACT

In yeast, multiple (pleiotropic) drug resistance (MDR) transporters efflux xenobiotics from the cytoplasm to the environment. Additionally, upon the accumulation of xenobiotics in the cells, MDR genes are induced. At the same time, fungal cells can produce secondary metabolites with physico-chemical properties similar to MDR transporter substrates. Nitrogen limitation in yeast Saccharomyces cerevisiae leads to the accumulation of phenylethanol, tryptophol, and tyrosol, which are products of aromatic amino acid catabolism. In this study, we investigated whether these compounds could induce or inhibit MDR in yeast. Double deletion of PDR1 and PDR3 genes, which are transcription factors that upregulate the expression of PDR genes, reduced yeast resistance to high concentrations of tyrosol (4-6 g/L) but not to the other two tested aromatic alcohols. PDR5 gene, but not other tested MDR transporter genes (SNQ2, YOR1, PDR10, PDR15) contributed to yeast resistance to tyrosol. Tyrosol inhibited the efflux of rhodamine 6G (R6G), a substrate for MDR transporters. However, preincubating yeast cells with tyrosol induced MDR, as evidenced by increased Pdr5-GFP levels and reduced yeast ability to accumulate Nile red, another fluorescent MDR-transporter substrate. Moreover, tyrosol inhibited the cytostatic effect of clotrimazole, the azole antifungal. Our results demonstrate that a natural secondary metabolite can modulate yeast MDR. We speculate that intermediates of aromatic amino acid metabolites coordinate cell metabolism and defense mechanisms against xenobiotics.

2.
Front Microbiol ; 13: 816622, 2022.
Article in English | MEDLINE | ID: mdl-35401495

ABSTRACT

In mitochondria, a small protein IF1 suppresses the hydrolytic activity of ATP synthase and presumably prevents excessive ATP hydrolysis under conditions of energy deprivation. In yeast Saccharomyces cerevisiae, IF1 homologs are encoded by two paralogous genes: INH1 and STF1. INH1 expression is known to aggravate the deleterious effects of mitochondrial DNA (mtDNA) depletion. Surprisingly, no beneficial effects of INH1 and STF1 were documented for yeast so far, and the functions of INH1 and STF1 in wild type cells are unclear. Here, we put forward a hypothesis that INH1 and STF1 bring advantage during the fast start of proliferation after reentry into exponential growth from post-diauxic or stationary phases. We found that yeast cells increase the concentration of both proteins in the post-diauxic phase. Post-diauxic phase yeast cells formed two subpopulations distinct in Inh1p and Stf1p concentrations. Upon exit from the post-diauxic phase cells with high level of Inh1-GFP started growing earlier than cells devoid of Inh1-GFP. However, double deletion of INH1 and STF1 did not increase the lag period necessary for stationary phase yeast cells to start growing after reinoculation into the fresh medium. These results point to a redundancy of the mechanisms preventing uncontrolled ATP hydrolysis during energy deprivation.

3.
Biochim Biophys Acta Bioenerg ; 1863(5): 148544, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35331734

ABSTRACT

Proton-translocating FOF1 ATP synthase (F-ATPase) couples ATP synthesis or hydrolysis to transmembrane proton transport in bacteria, chloroplasts, and mitochondria. The primary function of the mitochondrial FOF1 is ATP synthesis driven by protonmotive force (pmf) generated by the respiratory chain. However, when pmf is low or absent (e.g. during anoxia), FOF1 consumes ATP and functions as a proton-pumping ATPase. Several regulatory mechanisms suppress the ATPase activity of FOF1 at low pmf. In yeast mitochondria they include special inhibitory proteins Inh1p and Stf1p, and non-competitive inhibition of ATP hydrolysis by MgADP (ADP-inhibition). Presumably, these mechanisms help the cell to preserve the ATP pool upon membrane de-energization. However, no direct evidence was presented to support this hypothesis so far. Here we report that a point mutation Q263L in subunit beta of Saccharomyces cerevisiae ATP synthase significantly attenuated ADP-inhibition of the enzyme without major effect on the rate of ATP production by mitochondria. The mutation also decreased the sensitivity of the enzyme ATPase activity to azide. Similar effects of the corresponding mutations were observed in earlier studies in bacterial enzymes. This observation indicates that the molecular mechanism of ADP-inhibition is probably the same in mitochondrial and in bacterial FOF1. The mutant yeast strain had lower growth rate and had a longer lag period preceding exponential growth phase when starved cells were transferred to fresh growth medium. However, upon the loss of mitochondrial DNA (ρ0) the ßQ263L mutation effect was reversed: the ßQ263L ρ0 mutant grew faster than the wild-type ρ0 yeast. The results suggest that ADP-inhibition might play a role in prevention of wasteful ATP hydrolysis in the mitochondrial matrix.


Subject(s)
Adenosine Triphosphatases , Saccharomyces cerevisiae , Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Mitochondria/metabolism , Proton-Translocating ATPases , Protons , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
4.
J Bioenerg Biomembr ; 52(5): 383-395, 2020 10.
Article in English | MEDLINE | ID: mdl-32808242

ABSTRACT

Pleiotropic drug resistance (PDR) plasma membrane transporters mediate xenobiotic efflux from the cells and thereby help pathogenic microorganisms to withstand antimicrobial therapies. Given that xenobiotic efflux is an energy-consuming process, cells with upregulated PDR can be sensitive to perturbations in cellular energetics. Protonophores dissipate proton gradient across the cellular membranes and thus increase ATP spendings to their maintenance. We hypothesised that chronic exposure of yeast cells to the protonophores can favour the selection of cells with inactive PDR. To test this, we measured growth rates of the wild type Saccharomyces cerevisiae and PDR-deficient Δpdr1Δpdr3 strains in the presence of protonophores carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), pentachlorophenol (PCP) and niclosamide (NCA). Although the protonophore-induced respiration rates of these two strains were similar, the PDR-deficient strain outperformed the control one in the growth rate on non-fermentable carbon source supplemented with low concentrations of FCCP. Thus, active PDR can be deleterious under conditions of partially uncoupled oxidative-phosphorylation. Furthermore, our results suggest that tested anionic protonophores are poor substrates of PDR-transporters. At the same time, protonophores imparted azole tolerance to yeasts, pointing that they are potent PDR inducers. Interestingly, protonophore PCP led to a persistent increase in the levels of a major ABC-transporter Pdr5p, while azole clotrimazole induced only a temporary increase. Together, our data provides an insight into the effects of the protonophores in the eukaryotes at the cellular level and support the idea that cells with activated PDR can be selected out upon conditions of energy limitations.


Subject(s)
Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Biological Transport
5.
Eur J Cell Biol ; 99(2-3): 151071, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32057484

ABSTRACT

The mitochondrial network structure dynamically adapts to cellular metabolic challenges. Mitochondrial depolarisation, particularly, induces fragmentation of the network. This fragmentation may be a result of either a direct regulation of the mitochondrial fusion machinery by transmembrane potential or an indirect effect of metabolic remodelling. Activities of ATP synthase and adenine nucleotide translocator (ANT) link the mitochondrial transmembrane potential with the cytosolic NTP/NDP ratio. Given that mitochondrial fusion requires cytosolic GTP, a decrease in the NTP/NDP ratio might also account for protonophore-induced mitochondrial fragmentation. For evaluating the contributions of direct and indirect mechanisms to mitochondrial remodelling, we assessed the morphology of the mitochondrial network in yeast cells with inhibited ANT. We showed that the repression of AAC2 (PET9), a major ANT gene in yeast, increases mitochondrial transmembrane potential. However, the mitochondrial network in this strain was fragmented. Meanwhile, AAC2 repression did not prevent mitochondrial fusion in zygotes; nor did it inhibit mitochondrial hyperfusion induced by Dnm1p inhibitor mdivi-1. These results suggest that the inhibition of ANT, rather than preventing mitochondrial fusion, facilitates mitochondrial fission. The protonophores were not able to induce additional mitochondrial fragmentation in an AAC2-repressed strain and in yeast cells with inhibited ATP synthase. Importantly, treatment with the ATP synthase inhibitor oligomycin A also induced mitochondrial fragmentation and hyperpolarization. Taken together, our data suggest that ATP/ADP translocation plays a crucial role in shaping of the mitochondrial network and exemplify that an increase in mitochondrial membrane potential does not necessarily oppose mitochondrial fragmentation.


Subject(s)
Adenine Nucleotides/genetics , Amino Acid Sequence/genetics , Translocation, Genetic/genetics , Humans , Mitochondrial Dynamics
6.
Front Microbiol ; 11: 38, 2020.
Article in English | MEDLINE | ID: mdl-32047490

ABSTRACT

Lam proteins transport sterols between the membranes of different cellular compartments. In Saccharomyces cerevisiae, the LAM gene family consists of three pairs of paralogs. Because the function of paralogous genes can be redundant, the phenotypes of only a small number of LAM gene deletions have been reported; thus, the role of these genes in yeast physiology is still unclear. Here, we surveyed the phenotypes of double and quadruple deletants of paralogous LAM2(YSP2)/LAM4 and LAM1(YSP1)/LAM3(SIP3) genes that encode proteins localized in the junctions of the plasma membrane and endoplasmic reticulum. The quadruple deletant showed increased sterol content and a strong decrease in ethanol, heat shock and high osmolarity resistance. Surprisingly, the quadruple deletant and LAM2/LAM4 double deletion strain showed increased tolerance to the azole antifungals clotrimazole and miconazole. This effect was not associated with an increased rate of ABC-transporter substrate efflux. Possibly, increased sterol pool in the LAM deletion strains postpones the effect of azoles on cell growth. Alternatively, LAM deletions might alleviate the toxic effect of sterols as Lam proteins can transport toxic sterol biosynthesis intermediates into membrane compartments that are sensitive to these compounds. Our findings reveal novel biological roles of LAM genes in stress tolerance and suggest that mutations in these genes may confer upregulation of a mechanism that provides resistance to azole antifungals in pathogenic fungi.

7.
Biochimie ; 170: 49-56, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31843579

ABSTRACT

Microbial cells sense the presence of xenobiotics and, in response, upregulate genes involved in pleiotropic drug resistance (PDR). In yeast, PDR activation to a major extent relies on the transcription factor Pdr1. In addition, many xenobiotics induce oxidative stress, which may upregulate PDR independently of Pdr1 activity. Mitochondria are important sources of reactive oxygen species under stressful conditions. To evaluate the relevance of this redox pathway, we studied the activation of PDR in the yeast Candida glabrata, which we treated with a mitochondrially targeted antioxidant plastoquinonyl-decyl-triphenylphosphonium and dodecyltriphenylphosphonium (C12TPP) as a control. We found that both compounds induced activation of PDR genes and decreased the intracellular concentration of the PDR transporter substrate Nile red. Interestingly, the deletion of PDR transporter gene CDR1 inhibited the decrease in Nile red accumulation induced by antioxidant plastoquinonyl-decyl-triphenylphosphonium but not that by C12TPP. Moreover, antioxidant alpha-tocopherol inhibited C12TPP-mediated activation of PDR in Δcdr1 but not in the wild-type strain. Furthermore, pre-incubation of yeast cells with low concentrations of hydrogen peroxide induced a decrease in the intracellular concentration of Nile red in Δcdr1 and Δpdr1 as well as in control cells. Deletion of PDR1 inhibited the C12TPP-induced activation of CDR1 but not that of FLR1, which is a redox-regulated PDR transporter gene. It appears that disruption of the PDR1/CDR1 regulatory circuit makes auxiliary PDR regulation mechanisms crucial. Our data suggest that redox regulation of PDR is dispensable in wild-type cells because of redundancy in the activation pathways, but is manifested upon deletion of CDR1.


Subject(s)
Antifungal Agents/pharmacology , Candida glabrata/drug effects , Drug Resistance, Bacterial/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Membrane Transport Proteins/genetics , Sequence Deletion , Candida glabrata/genetics , Candida glabrata/growth & development , Fungal Proteins/metabolism , Membrane Transport Proteins/metabolism , Oxidation-Reduction , Transcriptional Activation
8.
Mech Ageing Dev ; 176: 24-31, 2018 12.
Article in English | MEDLINE | ID: mdl-30292690

ABSTRACT

While deviations from the optimal phenotype are deleterious, increased variation can prevent population extinction under severe stresses. Cell division asymmetry is an important source of microbial phenotypic heterogeneity. A consecutive set of asymmetric divisions can cause the gradual accumulation of deleterious factors and, at late stages, the death of old pole (mother) cells. This phenomenon is known as replicative aging. As the old cells are constantly being diluted by the progeny, the majority of a microbial population is represented by replicatively young cells. Therefore, early-age changes in yeast mother cells have a much greater impact on the integral performance of the microbial population than does functional deterioration at later ages. Here, we review the early manifestations of replicative aging in Saccharomyces cerevisiae mother cells that occur during the first ten cell cycles. Early age-dependent changes occur in stress resistance, genomic instability, protein aggregate levels, redox balance and metabolism. We speculate that some of these manifestations can be beneficial during stress exposure; therefore, early aging may be a bet-hedging mechanism. Together, the data suggest that the age component of variation in populations of asymmetrically dividing microorganisms is substantial and may play an important role in adaptations to changing environments.


Subject(s)
Adaptation, Physiological/physiology , Cell Cycle/physiology , Saccharomyces cerevisiae/physiology , Stress, Physiological/physiology
9.
Sci Rep ; 8(1): 8131, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29802261

ABSTRACT

Substrates of pleiotropic drug resistance (PDR) transporters can induce the expression of corresponding transporter genes by binding to their transcription factors. Penetrating cations are substrates of PDR transporters and theoretically may also activate the expression of transporter genes. However, the accumulation of penetrating cations inside mitochondria may prevent the sensing of these molecules. Thus, whether penetrating cations induce PDR is unclear. Using Saccharomyces cerevisiae as a model, we studied the effects of penetrating cations on the activation of PDR. We found that the lipophilic cation dodecyltriphenylphosphonium (C12TPP) induced the expression of the plasma membrane PDR transporter genes PDR5, SNQ2 and YOR1. Moreover, a 1-hour incubation with C12TPP increased the concentration of Pdr5p and Snq2p and prevented the accumulation of the PDR transporter substrate Nile red. The transcription factor PDR1 was required to mediate these effects, while PDR3 was dispensable. The deletion of the YAP1 or RTG2 genes encoding components of the mitochondria-to-nucleus signalling pathway did not prevent the C12TPP-induced increase in Pdr5-GFP. Taken together, our data suggest (i) that the sequestration of lipophilic cations inside mitochondria does not significantly inhibit sensing by PDR activators and (ii) that the activation mechanisms do not require mitochondria as a signalling module.


Subject(s)
Drug Resistance, Fungal/drug effects , Drug Resistance, Fungal/genetics , Genetic Pleiotropy/drug effects , Organophosphorus Compounds/pharmacology , Cell Nucleus/drug effects , Cell Nucleus/metabolism , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Gene Deletion , Mitochondria/drug effects , Mitochondria/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription Factors/deficiency , Transcription Factors/genetics
10.
Sci Rep ; 7(1): 13220, 2017 10 16.
Article in English | MEDLINE | ID: mdl-29038504

ABSTRACT

Asymmetrical division can be a reason for microbial populations heterogeneity. In particular, budding yeast daughter cells are more vulnerable to stresses than the mothers. It was suggested that yeast mother cells could also differ from each other depending on their replicative age. To test this, we measured the levels of Idh1-GFP, Idh2-GFP, Trx2-GFP, Pdr5-GFP and Can1-GFP proteins in cells of the few first, most represented, age cohorts. Pdr5p and Can1p were selected because of the pronounced mother-bud asymmetry for these proteins distributions, Trx2p as indicator of oxidative stress. Isocitrate dehydrogenase subunits Idh1p and Idh2p were assessed because their levels are regulated by mitochondria. We found a small negative correlation between yeast replicative age and Idh1-GFP or Idh2-GFP but not Trx2-GFP levels. Mitochondrial network fragmentation was also confirmed as an early event of replicative aging. No significant difference in the membrane proteins levels Pdr5p and Can1p was found. Moreover, the elder mother cells showed lower coefficient of variation for Pdr5p levels compared to the younger ones and the daughters. Our data suggest that the levels of stress-response proteins Pdr5p and Trx2p in the mother cells are stable during the first few cell cycles regardless of their mother-bud asymmetry.


Subject(s)
Aging , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , ATP-Binding Cassette Transporters/metabolism , Amino Acid Transport Systems, Basic/metabolism , Mitochondria/metabolism , Models, Biological , Oxidative Stress , Protein Isoforms/metabolism , Thioredoxins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...