Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 39(1)2022 01 07.
Article in English | MEDLINE | ID: mdl-34905062

ABSTRACT

In most eukaryotic genomes, tandemly repeated copies of 5S rRNA genes are clustered outside the nucleolus organizer region (NOR), which normally encodes three other major rRNAs: 18S, 5.8S, and 28S. Our analysis of turtle rDNA sequences has revealed a 5S rDNA insertion into the NOR intergenic spacer in antisense orientation. The insertion (hereafter called NOR-5S rRNA gene) has a length of 119 bp and coexists with the canonical 5S rDNA clusters outside the NOR. Despite the ∼20% nucleotide difference between the two 5S gene sequences, their internal control regions for RNA polymerase III are similar. Using the turtle Trachemys scripta as a model species, we showed the NOR-5S rDNA specific expression in oocytes. This expression is concurrent with the NOR rDNA amplification during oocyte growth. We show that in vitellogenic oocytes, the NOR-5S rRNA prevails over the canonical 5S rRNA in the ribosomes, suggesting a role of modified ribosomes in oocyte-specific translation. The orders Testudines and Crocodilia seem to be the only taxa of vertebrates with such a peculiar rDNA organization. We speculate that the amplification of the 5S rRNA genes as a part of the NOR DNA during oogenesis provides a dosage balance between transcription of all the four ribosomal RNAs while producing a maternal pool of extra ribosomes. We further hypothesize that the NOR-5S rDNA insertion appeared in the Archelosauria clade during the Permian period and was lost later in the ancestors of Aves.


Subject(s)
Alligators and Crocodiles , Turtles , Alligators and Crocodiles/genetics , Animals , DNA, Ribosomal/genetics , Genes, rRNA , Oocytes , RNA, Ribosomal, 5S/genetics , Turtles/genetics
2.
Comp Cytogenet ; 13(2): 121-132, 2019.
Article in English | MEDLINE | ID: mdl-31149328

ABSTRACT

Reptiles are good objects for studying the evolution of sex determination, since they have different sex determination systems in different lineages. Lacertid lizards have been long-known for possessing ZZ/ZW type sex chromosomes. However, due to morphological uniformity of lacertid chromosomes, the Z chromosome has been only putatively cytologically identified. We used lampbrush chromosome (LBC) analysis and FISH with a W-specific probe in Eremiasvelox (Pallas, 1771) to unequivocally identify the ZW bivalent and investigate its meiotic behavior. The heterochromatic W chromosome is decondensed at the lampbrush stage, indicating active transcription, contrast with the highly condensed condition of the lampbrush W chromosomes in birds. We identified the Z chromosome by its chiasmatic association with the W chromosome as chromosome XIII of the 19 chromosomes in the LBC karyotype. Our findings agree with previous genetic and genomic studies, which suggested that the lacertid Z chromosome should be one of the smaller macrochromosomes.

3.
Proc Natl Acad Sci U S A ; 116(24): 11845-11850, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31036668

ABSTRACT

An unusual supernumerary chromosome has been reported for two related avian species, the zebra and Bengalese finches. This large, germline-restricted chromosome (GRC) is eliminated from somatic cells and spermatids and transmitted via oocytes only. Its origin, distribution among avian lineages, and function were mostly unknown so far. Using immunolocalization of key meiotic proteins, we found that GRCs of varying size and genetic content are present in all 16 songbird species investigated and absent from germline genomes of all eight examined bird species from other avian orders. Results of fluorescent in situ hybridization of microdissected GRC probes and their sequencing indicate that GRCs show little homology between songbird species and contain a variety of repetitive elements and unique sequences with paralogs in the somatic genome. Our data suggest that the GRC evolved in the common ancestor of all songbirds and underwent significant changes in the extant descendant lineages.


Subject(s)
Chromosomes/genetics , Germ Cells/physiology , Songbirds/genetics , Animals , Female , Genome/genetics , Genomics/methods , In Situ Hybridization, Fluorescence/methods , Male , Oocytes/physiology , Repetitive Sequences, Nucleic Acid/genetics
4.
Chromosoma ; 127(1): 73-83, 2018 03.
Article in English | MEDLINE | ID: mdl-28951974

ABSTRACT

The content of repetitive DNA in avian genomes is considerably less than in other investigated vertebrates. The first descriptions of tandem repeats were based on the results of routine biochemical and molecular biological experiments. Both satellite DNA and interspersed repetitive elements were annotated using library-based approach and de novo repeat identification in assembled genome. The development of deep-sequencing methods provides datasets of high quality without preassembly allowing one to annotate repetitive elements from unassembled part of genomes. In this work, we search the chicken assembly and annotate high copy number tandem repeats from unassembled short raw reads. Tandem repeat (GGAAA)n has been identified and found to be the second after telomeric repeat (TTAGGG)n most abundant in the chicken genome. Furthermore, (GGAAA)n repeat forms expanded arrays on the both arms of the chicken W chromosome. Our results highlight the complexity of repetitive sequences and update data about organization of sex W chromosome in chicken.


Subject(s)
Chickens/genetics , Chromosomes , Gene Dosage , Tandem Repeat Sequences , Animals , Female , Genome , Genomics/methods , In Situ Hybridization, Fluorescence , Male , Sex Factors
5.
Curr Genet ; 64(2): 469-478, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29027580

ABSTRACT

The search for novel pathological and functional amyloids represents one of the most important tasks of contemporary biomedicine. Formation of pathological amyloid fibrils in the aging brain causes incurable neurodegenerative disorders such as Alzheimer's, Parkinson's Huntington's diseases. At the same time, a set of amyloids regulates vital processes in archaea, prokaryotes and eukaryotes. Our knowledge of the prevalence and biological significance of amyloids is limited due to the lack of universal methods for their identification. Here, using our original method of proteomic screening PSIA-LC-MALDI, we identified a number of proteins that form amyloid-like detergent-resistant aggregates in Saccharomyces cerevisiae. We revealed in yeast strains of different origin known yeast prions, prion-associated proteins, and a set of proteins whose amyloid properties were not shown before. A substantial number of the identified proteins are cell wall components, suggesting that amyloids may play important roles in the formation of this extracellular protective sheath. Two proteins identified in our screen, Gas1 and Ygp1, involved in biogenesis of the yeast cell wall, were selected for detailed analysis of amyloid properties. We show that Gas1 and Ygp1 demonstrate amyloid properties both in vivo in yeast cells and using the bacteria-based system C-DAG. Taken together, our data show that this proteomic approach is very useful for identification of novel amyloids.


Subject(s)
Amyloid/genetics , Amyloidogenic Proteins/genetics , Proteome/genetics , Saccharomyces cerevisiae/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Humans , Prion Proteins/genetics , Prokaryotic Cells/metabolism , Prokaryotic Cells/pathology , Proteomics
6.
PLoS One ; 11(6): e0157464, 2016.
Article in English | MEDLINE | ID: mdl-27299357

ABSTRACT

Ribosomal RNA (rRNA) genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5'ETS (1836 bp), 18S rRNA gene (1823 bp), ITS1 (2530 bp), 5.8S rRNA gene (157 bp), ITS2 (733 bp), 28S rRNA gene (4441 bp) and 3'ETS (343 bp). The rRNA gene cluster sequence of 11863 bp was assembled from raw reads and deposited to GenBank under KT445934 accession number. The assembly was validated through in situ fluorescent hybridization analysis on chicken metaphase chromosomes using computed and synthesized specific probes, as well as through the reference assembly against de novo assembled rRNA gene cluster sequence using sequenced fragments of BAC-clone containing chicken NOR (nucleolus organizer region). The results have confirmed the chicken rRNA gene cluster validity.


Subject(s)
Chickens/genetics , Multigene Family , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , RNA, Ribosomal, 5.8S/genetics , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...