Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(20): 5077-5082, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29720443

ABSTRACT

From organic electronics to biological systems, understanding the role of intermolecular interactions between spin pairs is a key challenge. Here we show how such pairs can be selectively addressed with combined spin and optical sensitivity. We demonstrate this for bound pairs of spin-triplet excitations formed by singlet fission, with direct applicability across a wide range of synthetic and biological systems. We show that the site sensitivity of exchange coupling allows distinct triplet pairs to be resonantly addressed at different magnetic fields, tuning them between optically bright singlet ([Formula: see text]) and dark triplet quintet ([Formula: see text]) configurations: This induces narrow holes in a broad optical emission spectrum, uncovering exchange-specific luminescence. Using fields up to 60 T, we identify three distinct triplet-pair sites, with exchange couplings varying over an order of magnitude (0.3-5 meV), each with its own luminescence spectrum, coexisting in a single material. Our results reveal how site selectivity can be achieved for organic spin pairs in a broad range of systems.

2.
Nano Lett ; 17(5): 2979-2984, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28440658

ABSTRACT

III-V nanostructures have the potential to revolutionize optoelectronics and energy harvesting. For this to become a reality, critical issues such as reproducibility and sensitivity to defects should be resolved. By discussing the optical properties of molecular beam epitaxy (MBE) grown GaAs nanomembranes we highlight several features that bring them closer to large scale applications. Uncapped membranes exhibit a very high optical quality, expressed by extremely narrow neutral exciton emission, allowing the resolution of the more complex excitonic structure for the first time. Capping of the membranes with an AlGaAs shell results in a strong increase of emission intensity but also in a shift and broadening of the exciton peak. This is attributed to the existence of impurities in the shell, beyond MBE-grade quality, showing the high sensitivity of these structures to the presence of impurities. Finally, emission properties are identical at the submicron and submillimeter scale, demonstrating the potential of these structures for large scale applications.

3.
Nanoscale ; 9(9): 3222-3230, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28225143

ABSTRACT

The family of organic-inorganic tri-halide perovskites including MA (MethylAmmonium)PbI3, MAPbI3-xClx, FA (FormAmidinium)PbI3 and FAPbBr3 are having a tremendous impact on the field of photovoltaic cells due to the combination of their ease of deposition and high energy conversion efficiencies. Device performance, however, is known to be still significantly affected by the presence of inhomogeneities. Here we report on a study of temperature dependent micro-photoluminescence which shows a strong spatial inhomogeneity related to the presence of microcrystalline grains, which can be both bright and dark. In all of the tri-iodide based materials there is evidence that the tetragonal to orthorhombic phase transition observed around 160 K does not occur uniformly across the sample with domain formation related to the underlying microcrystallite grains, some of which remain in the high temperature, tetragonal, phase even at very low temperatures. At low temperature the tetragonal domains can be significantly influenced by local defects in the layers or the introduction of residual levels of chlorine in mixed halide layers or dopant atoms such as aluminium. We see that improvements in room temperature energy conversion efficiency appear to be directly related to reductions in the proportions of the layer which remain in the tetragonal phase at low temperature. In FAPbBr3 a more macroscopic domain structure is observed with large numbers of grains forming phase correlated regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...