Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pers Med ; 13(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37511699

ABSTRACT

This systematic review evaluated the animal and human evidence for pharmacomicrobiomics (PMx) interactions of antidepressant medications. Studies of gut microbiota effects on functional and behavioral effects of antidepressants in human and animal models were identified from PubMed up to December 2022. Risk of bias was assessed, and results are presented as a systematic review following PRISMA guidelines. A total of 28 (21 animal, 7 human) studies were included in the review. The reviewed papers converged on three themes: (1) Antidepressants can alter the composition and metabolites of gut microbiota, (2) gut microbiota can alter the bioavailability of certain antidepressants, and (3) gut microbiota may modulate the clinical or modeled mood modifying effects of antidepressants. The majority (n = 22) of studies had at least moderate levels of bias present. While strong evidence is still lacking to understand the clinical role of antidepressant PMx in human health, there is evidence for interactions among antidepressants, microbiota changes, microbiota metabolite changes, and behavior. Well-controlled studies of the mediating and moderating effects of baseline and treatment-emergent changes in microbiota on therapeutic and adverse responses to antidepressants are needed to better establish a potential role of PMx in personalizing antidepressant treatment selection and response prediction.

2.
Microorganisms ; 8(11)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33217891

ABSTRACT

DNA samples from 74 patients with non-malarial acute febrile illness (AFI), 282 rodents, 100 cattle, 56 dogs and 160 Rhipicephalus sanguineus ticks were screened for the presence of Anaplasma phagocytophilum DNA using a quantitative PCR (qPCR) assay targeting the msp2 gene. The test detected both A. phagocytophilum and Anaplasma sp. SA/ZAM dog DNA. Microbiome sequencing confirmed the presence of low levels of A. phagocytophilum DNA in the blood of rodents, dogs and cattle, while high levels of A. platys and Anaplasma sp. SA/ZAM dog were detected in dogs. Directed sequencing of the 16S rRNA and gltA genes in selected samples revealed the presence of A. phagocytophilum DNA in humans, dogs and rodents and highlighted its importance as a possible contributing cause of AFI in South Africa. A number of recently described Anaplasma species and A. platys were also detected in the study. Phylogenetic analyses grouped Anaplasma sp. SA/ZAM dog into a distinct clade, with sufficient divergence from other Anaplasma species to warrant classification as a separate species. Until appropriate type-material can be deposited and the species is formally described, we will refer to this novel organism as Anaplasma sp. SA dog.

3.
Microbiome ; 5(1): 133, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28978338

ABSTRACT

BACKGROUND: Nearly a quarter of emerging infectious diseases identified in the last century are arthropod-borne. Although ticks and insects can carry pathogenic microorganisms, non-pathogenic microbes make up the majority of their microbial communities. The majority of tick microbiome research has had a focus on discovery and description; very few studies have analyzed the ecological context and functional responses of the bacterial microbiome of ticks. The goal of this analysis was to characterize the stability of the bacterial microbiome of Dermacentor andersoni ticks between generations and two populations within a species. METHODS: The bacterial microbiome of D. andersoni midguts and salivary glands was analyzed from populations collected at two different ecologically distinct sites by comparing field (F1) and lab-reared populations (F1-F3) over three generations. The microbiome composition of pooled and individual samples was analyzed by sequencing nearly full-length 16S rRNA gene amplicons using a Pacific Biosciences CCS platform that allows identification of bacteria to the species level. FINDINGS: In this study, we found that the D. andersoni microbiome was distinct in different geographic populations and was tissue specific, differing between the midgut and the salivary gland, over multiple generations. Additionally, our study showed that the microbiomes of laboratory-reared populations were not necessarily representative of their respective field populations. Furthermore, we demonstrated that the microbiome of a few individual ticks does not represent the microbiome composition at the population level. CONCLUSIONS: We demonstrated that the bacterial microbiome of D. andersoni was complex over three generations and specific to tick tissue (midgut vs. salivary glands) as well as geographic location (Burns, Oregon vs. Lake Como, Montana vs. laboratory setting). These results provide evidence that habitat of the tick population is a vital component of the complexity of the bacterial microbiome of ticks, and that the microbiome of lab colonies may not allow for comparative analyses with field populations. A broader understanding of microbiome variation will be required if we are to employ manipulation of the microbiome as a method for interfering with acquisition and transmission of tick-borne pathogens.


Subject(s)
Bacteria/isolation & purification , Dermacentor/microbiology , Microbiota/genetics , Animals , Bacteria/classification , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Salivary Glands/microbiology , Sequence Analysis, DNA , Symbiosis
4.
Environ Entomol ; 46(4): 766-770, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28881948

ABSTRACT

Two praying mantids, Tenodera aridifolia sinensis Saussure and Tenodera angustipennis Saussure, are commonly found in the same old-field habitats in the eastern United States and in much of temperate zone Asia. Naturally established populations of these two species were studied intensively over two consecutive years (2010 and 2011) in an old field in southeastern Virginia, to compare life history features relevant to how they coexist, or whether one or the other of them is likely to be more successful in the same habitat. Populations of both species declined about 50% from 2010 to 2011 (adults from 47 to 21 for T. a. sinensis; 37 to 20 for T. angustipennis), but T. a. sinensis oviposited 10 oothecae and T. angustipennis only one in 2011. Tenodera a. sinensis was more abundant in the study site in both years, hatched earlier, and matured and oviposited earlier than T. angustipennis. Fewer females of both species survived to maturity in 2011 than in 2010, possibly indicating a reduction in prey or habitat suitability in 2011. We suggest that T. angustipennis will always be at a disadvantage as a result of its smaller body size, because of interspecific predation (and potentially competition) from its congener, lower clutch size, and susceptibility to egg parasitism. Further, environmental variability across field habitats and years profoundly affects populations of both species in successional old fields.


Subject(s)
Life History Traits , Mantodea/physiology , Animals , Female , Grassland , Introduced Species , Mantodea/growth & development , Population Dynamics , Virginia
5.
ISME J ; 10(8): 1846-55, 2016 08.
Article in English | MEDLINE | ID: mdl-26882265

ABSTRACT

Ticks are of medical importance owing to their ability to transmit pathogens to humans and animals. The Rocky Mountain wood tick, Dermacentor andersoni, is a vector of a number of pathogens, including Anaplasma marginale, which is the most widespread tick-borne pathogen of livestock. Although ticks host pathogenic bacteria, they also harbor bacterial endosymbionts that have a role in tick physiology, survival, as well as pathogen acquisition and transmission. The goal of this study was to characterize the bacterial microbiome and examine the impact of microbiome disruption on pathogen susceptibility. The bacterial microbiome of two populations of D. andersoni with historically different susceptibilities to A. marginale was characterized. In this study, the microbiome was disrupted and then ticks were exposed to A. marginale or Francisella novicida to determine whether the microbiome correlated with pathogen susceptibility. Our study showed that an increase in proportion and quantity of Rickettsia bellii in the microbiome was negatively correlated to A. marginale levels in ticks. Furthermore, a decrease in Francisella endosymbionts was associated with lower F. novicida infection levels, demonstrating a positive pathogen-endosymbiont relationship. We demonstrate that endosymbionts and pathogens have varying interactions, and suggest that microbiome manipulation may provide a possible method for biocontrol by decreasing pathogen susceptibility of ticks.


Subject(s)
Anaplasma marginale/pathogenicity , Dermacentor/microbiology , Francisella/pathogenicity , Microbiota , Rickettsia/growth & development , Animals , Dermacentor/physiology , Humans , Symbiosis
6.
Parasit Vectors ; 8: 632, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26653035

ABSTRACT

BACKGROUND: In North America, ticks are the most economically impactful vectors of human and animal pathogens. The Rocky Mountain wood tick, Dermacentor andersoni (Acari: Ixodidae), transmits Rickettsia rickettsii and Anaplasma marginale to humans and cattle, respectively. In recent years, studies have shown that symbiotic organisms are involved in a number of biochemical and physiological functions. Characterizing the bacterial microbiome of D. andersoni is a pivotal step towards understanding symbiont-host interactions. FINDINGS: In this study, we have shown by high-throughput sequence analysis that the composition of endosymbionts in the midgut and salivary glands in adult ticks is dynamic over three generations. Four Proteobacteria genera, Rickettsia, Francisella, Arsenophonus, and Acinetobacter, were identified as predominant symbionts in these two tissues. Exposure to therapeutic doses of the broad-spectrum antibiotic, oxytetracycline, affected both proportions of predominant genera and significantly reduced reproductive fitness. Additionally, Acinetobacter, a free-living ubiquitous microbe, invaded the bacterial microbiome at different proportions based on antibiotic treatment status suggesting that microbiome composition may have a role in susceptibility to environmental contaminants. CONCLUSIONS: This study characterized the bacterial microbiome in D. andersoni and determined the generational variability within this tick. Furthermore, this study confirmed that microbiome manipulation is associated with tick fitness and may be a potential method for biocontrol.


Subject(s)
Bacteria/classification , Bacteria/growth & development , Dermacentor/microbiology , Microbiota , Animals , Anti-Bacterial Agents/administration & dosage , Arachnid Vectors , Bacteria/drug effects , Dermacentor/physiology , Gastrointestinal Tract/microbiology , High-Throughput Nucleotide Sequencing , North America , Reproduction , Salivary Glands/microbiology , Symbiosis , Wood/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...