Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
NAR Cancer ; 6(1): zcae013, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38500596

ABSTRACT

Nucleotide excision repair (NER) reduces efficacy of treatment with platinum (Pt)-based chemotherapy by removing Pt lesions from DNA. Previous study has identified that missense mutation or loss of the NER genes Excision Repair Cross Complementation Group 1 and 2 (ERCC1 and ERCC2) leads to improved patient outcomes after treatment with Pt-based chemotherapies. Although most NER gene alterations found in patient tumors are missense mutations, the impact of mutations in the remaining nearly 20 NER genes is unknown. Towards this goal, we previously developed a machine learning strategy to predict genetic variants in an essential NER protein, Xeroderma Pigmentosum Complementation Group A (XPA), that disrupt repair. In this study, we report in-depth analyses of a subset of the predicted variants, including in vitro analyses of purified recombinant protein and cell-based assays to test Pt agent sensitivity in cells and determine mechanisms of NER dysfunction. The most NER deficient variant Y148D had reduced protein stability, weaker DNA binding, disrupted recruitment to damage, and degradation. Our findings demonstrate that tumor mutations in XPA impact cell survival after cisplatin treatment and provide valuable mechanistic insights to improve variant effect prediction. Broadly, these findings suggest XPA tumor variants should be considered when predicting chemotherapy response.

2.
bioRxiv ; 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37425789

ABSTRACT

Nucleotide excision repair (NER) neutralizes treatment with platinum (Pt)-based chemotherapy by removing Pt lesions from DNA. Previous study has identified that missense mutation or loss of either of the NER genes Excision Repair Cross Complementation Group 1 and 2 ( ERCC1 and ERCC2 ) leads to improved patient outcomes after treatment with Pt-based chemotherapies. Although most NER gene alterations found in patient tumors are missense mutations, the impact of such mutations in the remaining nearly 20 NER genes is unknown. Towards this goal, we previously developed a machine learning strategy to predict genetic variants in an essential NER scaffold protein, Xeroderma Pigmentosum Complementation Group A (XPA), that disrupt repair activity on a UV-damaged substrate. In this study, we report in-depth analyses of a subset of the predicted NER-deficient XPA variants, including in vitro analyses of purified recombinant protein and cell-based assays to test Pt agent sensitivity in cells and determine mechanisms of NER dysfunction. The most NER deficient variant Y148D had reduced protein stability, weaker DNA binding, disrupted recruitment to damage, and degradation resulting from tumor missense mutation. Our findings demonstrate that tumor mutations in XPA impact cell survival after cisplatin treatment and provide valuable mechanistic insights to further improve variant effect prediction efforts. More broadly, these findings suggest XPA tumor variants should be considered when predicting patient response to Pt-based chemotherapy. Significance: A destabilized, readily degraded tumor variant identified in the NER scaffold protein XPA sensitizes cells to cisplatin, suggesting that XPA variants can be used to predict response to chemotherapy.

3.
Biochemistry ; 61(11): 1113-1123, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35617695

ABSTRACT

DNA synthesis during replication begins with the generation of an ∼10-nucleotide primer by DNA primase. Primase contains a redox-active 4Fe-4S cluster in the C-terminal domain of the p58 subunit (p58C). The redox state of this 4Fe-4S cluster can be modulated via the transport of charge through the protein and the DNA substrate (redox switching); changes in the redox state of the cluster alter the ability of p58C to associate with its substrate. The efficiency of redox switching in p58C can be altered by mutating tyrosine residues that bridge the 4Fe-4S cluster and the nucleic acid binding site. Here, we report the effects of mutating bridging tyrosines to phenylalanines in yeast p58C. High-resolution crystal structures show that these mutations, even with six tyrosines simultaneously mutated, do not perturb the three-dimensional structure of the protein. In contrast, measurements of the electrochemical properties on DNA-modified electrodes of p58C containing multiple tyrosine to phenylalanine mutations reveal deficiencies in their ability to engage in DNA charge transport. Significantly, this loss of electrochemical activity correlates with decreased primase activity. While single-site mutants showed modest decreases in activity compared to that of the wild-type primase, the protein containing six mutations exhibited a 10-fold or greater decrease. Thus, many possible tyrosine-mediated pathways for charge transport in yeast p58C exist, but inhibiting these pathways together diminishes the ability of yeast primase to generate primers. These results support a model in which redox switching is essential for primase activity.


Subject(s)
DNA Primase , Iron-Sulfur Proteins , DNA/chemistry , DNA Primase/metabolism , Iron-Sulfur Proteins/chemistry , RNA/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Tyrosine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...