Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Hered ; 113(2): 205-214, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35575077

ABSTRACT

The plant genus Bidens (Asteraceae or Compositae; Coreopsidae) is a species-rich and circumglobally distributed taxon. The 19 hexaploid species endemic to the Hawaiian Islands are considered an iconic example of adaptive radiation, of which many are imperiled and of high conservation concern. Until now, no genomic resources were available for this genus, which may serve as a model system for understanding the evolutionary genomics of explosive plant diversification. Here, we present a high-quality reference genome for the Hawai'i Island endemic species B. hawaiensis A. Gray reconstructed from long-read, high-fidelity sequences generated on a Pacific Biosciences Sequel II System. The haplotype-aware, draft genome assembly consisted of ~6.67 Giga bases (Gb), close to the holoploid genome size estimate of 7.56 Gb (±0.44 SD) determined by flow cytometry. After removal of alternate haplotigs and contaminant filtering, the consensus haploid reference genome was comprised of 15 904 contigs containing ~3.48 Gb, with a contig N50 value of 422 594. The high interspersed repeat content of the genome, approximately 74%, along with hexaploid status, contributed to assembly fragmentation. Both the haplotype-aware and consensus haploid assemblies recovered >96% of Benchmarking Universal Single-Copy Orthologs. Yet, the removal of alternate haplotigs did not substantially reduce the proportion of duplicated benchmarking genes (~79% vs. ~68%). This reference genome will support future work on the speciation process during adaptive radiation, including resolving evolutionary relationships, determining the genomic basis of trait evolution, and supporting ongoing conservation efforts.


Subject(s)
Bidens , Genome , Genome, Plant , Genomics , Haploidy , Hawaii
2.
Am J Bot ; 108(3): 505-519, 2021 03.
Article in English | MEDLINE | ID: mdl-33675072

ABSTRACT

PREMISE: With over 1500 species, the globally distributed Vernonieae is one of the most successful members of the largest family of flowering plants, the Compositae. However, due to its morphological complexity and limited geographic representation in previous studies, subtribal and biogeographic relationships are unclear. Here, new DNA sequence data spanning the geographic range of the tribe provides a taxonomically robust time-calibrated phylogeny, estimates migration pathways and timing of important biogeographic events, and allows inference of environmental factors that have contributed to the success of the Vernonieae worldwide. METHODS: Phylogenetic relationships were estimated for 368 taxa representing all Vernonieae subtribes. Molecular clock and ancestral range estimation analyses provide a framework for inference of the biogeographic history of the tribe. RESULTS: Relationships among the subtribes were established and correct placement determined for problematic taxa, along with the first model-based assessment of the biogeographic history of the tribe. The Vernonieae were estimated to have evolved ~50 mya. Africa was the first center of diversity, from which a single dispersal event established the monophyletic New World lineage. Long-distance dispersal from Africa and Brazil established the tribe on five continents and Oceania. CONCLUSIONS: The New World lineage is monophyletic, but Old World taxa are not. New subtribal taxonomies are needed. Moquinieae are nested in Vernonieae. Long-distance dispersal from Africa beginning 45 mya was key to establishing the tribe's near-global distribution. Migration corridors created by volcanic mountain chains and iron-rich soils in Africa and the Americas promoted radiation and range expansion.


Subject(s)
Asteraceae , Helianthus , Africa , Bayes Theorem , Brazil , Helianthus/genetics , Phylogeny , Phylogeography
4.
Front Plant Sci ; 12: 787127, 2021.
Article in English | MEDLINE | ID: mdl-35178056

ABSTRACT

Herbarium sheets present a unique view of the world's botanical history, evolution, and biodiversity. This makes them an all-important data source for botanical research. With the increased digitization of herbaria worldwide and advances in the domain of fine-grained visual classification which can facilitate automatic identification of herbarium specimen images, there are many opportunities for supporting and expanding research in this field. However, existing datasets are either too small, or not diverse enough, in terms of represented taxa, geographic distribution, and imaging protocols. Furthermore, aggregating datasets is difficult as taxa are recognized under a multitude of names and must be aligned to a common reference. We introduce the Herbarium 2021 Half-Earth dataset: the largest and most diverse dataset of herbarium specimen images, to date, for automatic taxon recognition. We also present the results of the Herbarium 2021 Half-Earth challenge, a competition that was part of the Eighth Workshop on Fine-Grained Visual Categorization (FGVC8) and hosted by Kaggle to encourage the development of models to automatically identify taxa from herbarium sheet images.

5.
New Phytol ; 228(1): 376-392, 2020 10.
Article in English | MEDLINE | ID: mdl-32446281

ABSTRACT

Fossil grass silica short cell phytoliths (GSSCP) have been used to reconstruct the biogeography of Poaceae, untangle crop domestication history and detect past vegetation shifts. These inferences depend on accurately identifying the clade to which the fossils belong. Patterns of GSSCP shape and size variation across the family have not been established and current classification methods are subjective or based on a 2D view that ignores important 3D shape variation. Focusing on Poaceae subfamilies Anomochlooideae, Pharoideae, Pueliodieae, Bambusoideae and Oryzoideae, we observed in situ GSSCP to establish their orientation and imaged isolated GSSCP using confocal microscopy to produce 3D models. 3D geometric morphometrics was used to analyze GSSCP shape and size. Classification models were applied to GSSCP from Eocene sediments from Nebraska, USA, and Anatolia, Turkey. There were significant shape differences between nearly all recognized GSSCP morphotypes and between clades with shared morphotypes. Most of the Eocene GSSCP were classified as woody bamboos with some distinctive Nebraska GSSCP classified as herbaceous bamboos. 3D morphometrics hold great promise for GSSCP classification. It accounts for the complete GSSCP shape, automates size measurements and accommodates the complete range of morphotypes within a single analytical framework.


Subject(s)
Fossils , Poaceae , Phylogeny , Silicon Dioxide
6.
J Hered ; 111(1): 119-137, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31953949

ABSTRACT

Hawaiian plant radiations often result in lineages with exceptionally high species richness and extreme morphological and ecological differentiation. However, they typically display low levels of genetic variation, hindering the use of classic DNA markers to resolve their evolutionary histories. Here we utilize a phylogenomic approach to generate the first generally well-resolved phylogenetic hypothesis for the evolution of the Hawaiian Bidens (Asteraceae) adaptive radiation, including refined initial colonization and divergence time estimates. We sequenced the chloroplast genome (plastome) and nuclear ribosomal complex for 18 of the 19 endemic species of Hawaiian Bidens and 4 outgroup species. Phylogenomic analyses based on the concatenated dataset (plastome and nuclear) resulted in identical Bayesian and Maximum Likelihood trees with high statistical support at most nodes. Estimates from dating analyses were similar across datasets, with the crown group emerging ~1.76-1.82 Mya. Biogeographic analyses based on the nuclear and concatenated datasets indicated that colonization within the Hawaiian Islands generally followed the progression rule with 67-80% of colonization events from older to younger islands, while only 53% of events followed the progression rule in the plastome analysis. We find strong evidence for nuclear-plastome conflict indicating a potentially important role for hybridization in the evolution of the group. However, incomplete lineage sorting cannot be ruled out due to the small number of independent loci analyzed. This study contributes new insights into species relationships and the biogeographic history of the explosive Hawaiian Bidens adaptive radiation.


Subject(s)
Bidens/genetics , Evolution, Molecular , Genetic Speciation , Genome, Plant , Cell Nucleus/genetics , DNA, Plant , Genome, Chloroplast , Hawaii , Models, Genetic , Phylogeny , Phylogeography , Ribosomal Proteins/genetics
7.
New Phytol ; 228(1): 15-23, 2020 10.
Article in English | MEDLINE | ID: mdl-33448428

ABSTRACT

Process-based vegetation models attempt to represent the wide range of trait variation in biomes by grouping ecologically similar species into plant functional types (PFTs). This approach has been successful in representing many aspects of plant physiology and biophysics but struggles to capture biogeographic history and ecological dynamics that determine biome boundaries and plant distributions. Grass-dominated ecosystems are broadly distributed across all vegetated continents and harbour large functional diversity, yet most Land Surface Models (LSMs) summarise grasses into two generic PFTs based primarily on differences between temperate C3 grasses and (sub)tropical C4 grasses. Incorporation of species-level trait variation is an active area of research to enhance the ecological realism of PFTs, which form the basis for vegetation processes and dynamics in LSMs. Using reported measurements, we developed grass functional trait values (physiological, structural, biochemical, anatomical, phenological, and disturbance-related) of dominant lineages to improve LSM representations. Our method is fundamentally different from previous efforts, as it uses phylogenetic relatedness to create lineage-based functional types (LFTs), situated between species-level trait data and PFT-level abstractions, thus providing a realistic representation of functional diversity and opening the door to the development of new vegetation models.


Subject(s)
Ecosystem , Plants , Phylogeny , Plant Dispersal , Poaceae
8.
Cladistics ; 36(5): 481-504, 2020 10.
Article in English | MEDLINE | ID: mdl-34618964

ABSTRACT

We used a bi-organellar phylogenomic approach to address higher-order relationships in Pandanales, including the first molecular phylogenetic study of the panama-hat family, Cyclanthaceae. Our genus-level study of plastid and mitochondrial gene sets includes a comprehensive sampling of photosynthetic lineages across the order, and provides a framework for investigating clade ages, biogeographic hypotheses and organellar molecular evolution. Using multiple inference methods and both organellar genomes, we recovered mostly congruent and strongly supported relationships within and between families, including the placement of fully mycoheterotrophic Triuridaceae. Cyclanthaceae and Pandanaceae plastomes have slow substitution rates, contributing to weakly supported plastid-based relationships in Cyclanthaceae. While generally slowly evolving, mitochondrial genomes exhibit sporadic rate elevation across the order. However, we infer well-supported relationships even for slower evolving mitochondrial lineages in Cyclanthaceae. Clade age estimates across photosynthetic lineages are largely consistent with previous studies, are well correlated between the two organellar genomes (with slightly younger inferences from mitochondrial data), and support several biogeographic hypotheses. We show that rapidly evolving non-photosynthetic lineages may bias age estimates upwards at neighbouring photosynthetic nodes, even using a relaxed clock model. Finally, we uncovered new genome structural variants in photosynthetic taxa at plastid inverted repeat boundaries that show promise as interfamilial phylogenetic markers.


Subject(s)
Genome, Mitochondrial , Genome, Plastid , Magnoliopsida/classification , Magnoliopsida/genetics , Genes, Plant , Mitochondria/genetics , Phylogeny , Plastids/genetics
9.
Evolution ; 73(5): 927-946, 2019 05.
Article in English | MEDLINE | ID: mdl-30874302

ABSTRACT

Grass leaf shape is a strong indicator of their habitat with linear leaves predominating in open areas and ovate leaves distinguishing forest-associated grasses. This pattern among extant species suggests that ancestral shifts between forest and open habitats may have coincided with changes in leaf shape or size. We tested relationships between habitat, climate, photosynthetic pathway, and leaf shape and size in a phylogenetic framework to evaluate drivers of leaf shape and size variation over the evolutionary history of the family. We also estimated the ancestral habitat of Poaceae and tested whether forest margins served as transitional zones for shifts between forests and grasslands. We found that grass leaf shape is converging toward different shape optima in the forest understory, forest margins, and open habitats. Leaf size also varies with habitat. Grasses have smaller leaves in open and drier areas, and in areas with high solar irradiance. Direct transitions between linear and ovate leaves are rare as are direct shifts between forest and open habitats. The most likely ancestral habitat of the family was the forest understory and forest margins along with an intermediate leaf shape served as important transitional habitat and morphology, respectively, for subsequent shifts across forest-grassland biome boundaries.


Subject(s)
Ecosystem , Plant Leaves/physiology , Poaceae/genetics , Poaceae/physiology , Bayes Theorem , Biodiversity , Biological Evolution , China , Climate , Forests , Fossils , Grassland , Likelihood Functions , Photosynthesis , Phylogeny , Time Factors
10.
Appl Plant Sci ; 6(8): e01177, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30214840

ABSTRACT

PREMISE OF THE STUDY: A refined procedure is described for modeling small, intricate plant structures using computer-aided design software. The procedure facilitates the study of wind pollination in the family Poaceae and provides virtual biological illustrations for public outreach. METHODS AND RESULTS: Spikelets were fixed in gFAA, dehydrated using ethanol and xylene, embedded in paraffin wax, and then sectioned with a rotary microtome. Images of serial sections were used as a reference for modeling the shape of bracts with splines in a computer-aided design program. Virtual models produced by this method have many potential uses; examples include geometric morphometric analyses and simulations of computational fluid dynamics. CONCLUSIONS: This protocol is a synthesis of modern biological illustration and engineering technology. Virtual models facilitate quantitative experiments that may address questions about reproductive biology, conditions shaping the form of anatomical support, or the morphological evolution of structures of biomechanical interest.

11.
Front Plant Sci ; 9: 553, 2018.
Article in English | MEDLINE | ID: mdl-29922307

ABSTRACT

Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied as a filtration across simplicial complexes (or more simply, a method to measure topological features of spaces across different spatial resolutions), to overcome these limitations. The described method isolates subsets of shape features and measures the spatial relationship of neighboring pixel densities in a shape. We apply the method to the analysis of 182,707 leaves, both published and unpublished, representing 141 plant families collected from 75 sites throughout the world. By measuring leaves from throughout the seed plants using persistent homology, a defined morphospace comparing all leaves is demarcated. Clear differences in shape between major phylogenetic groups are detected and estimates of leaf shape diversity within plant families are made. The approach predicts plant family above chance. The application of a persistent homology method, using topological features, to measure leaf shape allows for a unified morphometric framework to measure plant form, including shapes, textures, patterns, and branching architectures.

12.
Mol Phylogenet Evol ; 83: 20-32, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25463018

ABSTRACT

Pandanaceae (screwpines) is a monocot family composed of c. 750 species widely distributed in the Paleotropics. It has been proposed that the family may have a Gondwanan origin with an extant Paleotropical distribution resulting from the breakup of that supercontinent. However, fossils supporting that hypothesis have been recently reassigned to other families while new fossil discoveries suggest an alternate hypothesis. In the present study, nuclear and chloroplast sequences were used to resolve relationships among Pandanaceae genera. Two well-supported fossils were used to produce a chronogram to infer whether the age of major intra-familial lineages corresponds with the breakup of Gondwana. The Pandanaceae has a Late Cretaceous origin, and genera on former Gondwanan landmasses began to diverge in the Late Eocene, well after many of the southern hemisphere continents became isolated. The results suggest an extant distribution influenced by long-distance-dispersal. The most widespread group within the family, the Pandanus tectorius species complex, originated in Eastern Queensland within the past six million years and has spread to encompass nearly the entire geographic extent of the family from Africa through Polynesia. The spread of that group is likely due to dispersal via hydrochory as well as a combination of traits such as agamospermy, anemophily, and multi-seeded propagules which can facilitate the establishment of new populations in remote locations.


Subject(s)
Biological Evolution , Pandanaceae/classification , Phylogeny , Bayes Theorem , Cell Nucleus/genetics , DNA, Chloroplast/genetics , DNA, Plant/genetics , Fossils , Likelihood Functions , Models, Genetic , Queensland , Sequence Analysis, DNA
13.
PLoS One ; 7(9): e44966, 2012.
Article in English | MEDLINE | ID: mdl-22984595

ABSTRACT

We coordinated biogeographical comparisons of the impacts of an exotic invasive tree in its native and non-native ranges with a congeneric comparison in the non-native range. Prosopis juliflora is taxonomically complicated and with P. pallida forms the P. juliflora complex. Thus we sampled P. juliflora in its native Venezuela, and also located two field sites in Peru, the native range of Prosopis pallida. Canopies of Prosopis juliflora, a native of the New World but an invader in many other regions, had facilitative effects on the diversity of other species in its native Venezuela, and P. pallida had both negative and positive effects depending on the year, (overall neutral effects) in its native Peru. However, in India and Hawaii, USA, where P. juliflora is an aggressive invader, canopy effects were consistently and strongly negative on species richness. Prosopis cineraria, a native to India, had much weaker effects on species richness in India than P. juliflora. We carried out multiple congeneric comparisons between P. juliflora and P. cineraria, and found that soil from the rhizosphere of P. juliflora had higher extractable phosphorus, soluble salts and total phenolics than P. cineraria rhizosphere soils. Experimentally applied P. juliflora litter caused far greater mortality of native Indian species than litter from P. cineraria. Prosopis juliflora leaf leachate had neutral to negative effects on root growth of three common crop species of north-west India whereas P. cineraria leaf leachate had positive effects. Prosopis juliflora leaf leachate also had higher concentrations of total phenolics and L-tryptophan than P. cineraria, suggesting a potential allelopathic mechanism for the congeneric differences. Our results also suggest the possibility of regional evolutionary trajectories among competitors and that recent mixing of species from different trajectories has the potential to disrupt evolved interactions among native species.


Subject(s)
Ecosystem , Plant Leaves/growth & development , Plant Roots/growth & development , Prosopis/growth & development , Geography , Hawaii , India , Peru , Phenols/metabolism , Phosphorus/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Population Density , Population Dynamics , Prosopis/classification , Prosopis/metabolism , Rhizosphere , Salts/metabolism , Soil/analysis , Species Specificity , United States , Venezuela
14.
PLoS One ; 7(2): e30434, 2012.
Article in English | MEDLINE | ID: mdl-22383962

ABSTRACT

HemaMax, a recombinant human interleukin-12 (IL-12), is under development to address an unmet medical need for effective treatments against acute radiation syndrome due to radiological terrorism or accident when administered at least 24 hours after radiation exposure. This study investigated pharmacokinetics, pharmacodynamics, and efficacy of m-HemaMax (recombinant murine IL-12), and HemaMax to increase survival after total body irradiation (TBI) in mice and rhesus monkeys, respectively, with no supportive care. In mice, m-HemaMax at an optimal 20 ng/mouse dose significantly increased percent survival and survival time when administered 24 hours after TBI between 8-9 Gy (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by increases in plasma interferon-γ (IFN-γ) and erythropoietin levels, recovery of femoral bone hematopoiesis characterized with the presence of IL-12 receptor ß2 subunit-expressing myeloid progenitors, megakaryocytes, and osteoblasts. Mitigation of jejunal radiation damage was also examined. At allometrically equivalent doses, HemaMax showed similar pharmacokinetics in rhesus monkeys compared to m-HemaMax in mice, but more robustly increased plasma IFN-γ levels. HemaMax also increased plasma erythropoietin, IL-15, IL-18, and neopterin levels. At non-human primate doses pharmacologically equivalent to murine doses, HemaMax (100 ng/Kg and 250 ng/Kg) administered at 24 hours after TBI (6.7 Gy/LD(50/30)) significantly increased percent survival of HemaMax groups compared to vehicle (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by a significantly higher leukocyte (neutrophils and lymphocytes), thrombocyte, and reticulocyte counts during nadir (days 12-14) and significantly less weight loss at day 12 compared to vehicle. These findings indicate successful interspecies dose conversion and provide proof of concept that HemaMax increases survival in irradiated rhesus monkeys by promoting hematopoiesis and recovery of immune functions and possibly gastrointestinal functions, likely through a network of interactions involving dendritic cells, osteoblasts, and soluble factors such as IL-12, IFN-γ, and cytoprotectant erythropoietin.


Subject(s)
Gene Expression Regulation , Interleukin-12/chemistry , Radiation Injuries, Experimental/drug therapy , Recombinant Proteins/chemistry , Animals , Biomarkers/metabolism , Dose-Response Relationship, Drug , Female , Hematopoiesis/drug effects , Hematopoietic Stem Cells/cytology , Humans , Interferon-gamma/metabolism , Interleukin-12/therapeutic use , Intestine, Small/metabolism , Leukocytes, Mononuclear/cytology , Lipopolysaccharide Receptors/biosynthesis , Macaca mulatta , Male , Megakaryocytes/cytology , Mice , Mice, Inbred C57BL , Osteoblasts/cytology , Receptors, Interleukin-12/metabolism , Recombinant Proteins/therapeutic use , Treatment Outcome
15.
J Chem Inf Model ; 51(6): 1347-52, 2011 Jun 27.
Article in English | MEDLINE | ID: mdl-21612274

ABSTRACT

Water plays an important role in the mediation of biomolecular interactions. Thus, accurate prediction and evaluation of water-mediated interactions is an important element in the computational design of interfaces involving proteins, RNA, and DNA. Here, we use an algorithm (WATGEN) to predict the locations of interfacial water molecules for a data set of 224 protein-RNA interfaces. The accuracy of the prediction is validated against water molecules present in the X-ray structures of 105 of these complexes. The complexity of the water networks is deconvoluted through definition of the characteristics of each water molecule based on its bridging properties between the protein and RNA and on its depth in the interface with respect to the bulk solvent. This approach has the potential for scoring the water network for incorporation into the computational design of protein-RNA complexes.


Subject(s)
Models, Molecular , Proteins/chemistry , Proteins/metabolism , RNA/chemistry , RNA/metabolism , Water/chemistry , Algorithms , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Reproducibility of Results
16.
J Neurooncol ; 102(2): 197-211, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20680400

ABSTRACT

The completion of the Human Genome Project resulted in discovery of many unknown novel genes. This feat paved the way for the future development of novel therapeutics for the treatment of human disease based on novel biological functions and pathways. Towards this aim, we undertook a bioinformatics analysis of in-house microarray data derived from purified hematopoietic stem cell populations. This effort led to the discovery of HSS1 (Hematopoietic Signal peptide-containing Secreted 1) and its splice variant HSM1 (Hematopoietic Signal peptide-containing Membrane domain-containing 1). HSS1 gene is evolutionarily conserved across species, phyla and even kingdoms, including mammals, invertebrates and plants. Structural analysis showed no homology between HSS1 and known proteins or known protein domains, indicating that it was a truly novel protein. Interestingly, the human HSS1 (hHSS1) gene is located at chromosome 19q13.33, a genomic region implicated in various cancers, including malignant glioma. Stable expression of hHSS1 in glioma-derived A172 and U87 cell lines greatly reduced their proliferation rates compared to mock-transfected cells. hHSS1 expression significantly affected the malignant phenotype of U87 cells both in vitro and in vivo. Further, preliminary immunohistochemical analysis revealed an increase in hHSS1/HSM1 immunoreactivity in two out of four high-grade astrocytomas (glioblastoma multiforme, WHO IV) as compared to low expression in all four low-grade diffuse astrocytomas (WHO grade II). High-expression of hHSS1 in high-grade gliomas was further supported by microarray data, which indicated that mesenchymal subclass gliomas exclusively up-regulated hHSS1. Our data reveal that HSS1 is a truly novel protein defining a new class of secreted factors, and that it may have an important role in cancer, particularly glioma.


Subject(s)
Brain Neoplasms/pathology , Chromosomes, Human, Pair 19/genetics , Glioblastoma/pathology , Proteins/metabolism , Tumor Suppressor Proteins/genetics , Amino Acid Sequence , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Blotting, Western , Brain Neoplasms/genetics , Cloning, Molecular , Gene Expression Profiling , Gene Library , Glioblastoma/genetics , Glycosylation , Humans , Immunoenzyme Techniques , Male , Membrane Proteins , Mice , Mice, Nude , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Proteins/genetics , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Survival Rate , Tumor Suppressor Proteins/metabolism , Xenograft Model Antitumor Assays
17.
Free Radic Biol Med ; 48(4): 609-18, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20025965

ABSTRACT

This study examined the protein targets of nitration and the consequent impact on protein function in rat kidney mitochondria at 4, 13, 19, and 24 months of age. Succinyl-CoA transferase (SCOT), a rate-limiting enzyme in the degradation of ketone bodies, was the most intensely reactive protein against anti-3-nitrotyrosine antibody in rat kidney mitochondria. However, subsequent mass spectrometric and amino acid analyses of purified SCOT indicated that tryptophan 372, rather than a tyrosine residue, was the actual site of simultaneous additions of nitro and hydroxy groups. This finding suggests that identification of nitrated tyrosine residues based solely on reactivity with anti-3-nitrotyrosine antibody can be potentially misleading. Between 4 and 24 months of age, the amounts of SCOT protein and catalytic activity, expressed per milligram of mitochondrial proteins, decreased by 55 and 45%, respectively. SCOT, and particularly its nitrated carboxy-terminal region, was relatively more susceptible to in vitro proteolysis than other randomly selected kidney mitochondrial proteins. The age-related decreases in SCOT protein amount and catalytic activity were prevented by a relatively long-term 40% reduction in the amount of food intake. Loss of SCOT protein in the aged rats may attenuate the capacity of kidney mitochondria to utilize ketone bodies for energy production.


Subject(s)
Coenzyme A-Transferases/metabolism , Kidney/enzymology , Kidney/metabolism , Mitochondria/metabolism , Nitrogen/chemistry , Tryptophan/chemistry , Age Factors , Aging , Animals , Caloric Restriction , Catalytic Domain , Ketones/metabolism , Male , Mass Spectrometry/methods , Rats , Rats, Inbred F344
18.
J Chem Inf Model ; 49(9): 2139-46, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19731952

ABSTRACT

We have developed a method for determination of the similarity of pairs of protein-RNA complexes, which we refer to as SIMA (Similarity by Identity and Motif Alignment). The key element in the SIMA method is the description of the protein-RNA interface in terms of motifs (salt bridges, aromatic stacking interactions, nonaromatic stacks, hydrophobic interactions, and hydrogen-bonded motifs), in addition to single hydrogen bonds and van der Waals contacts. Based on a pairwise scoring function combining motif alignment with identity of the protein and RNA sequences, we define a SIMA score for any pair of protein-RNA complexes. A positive score indicates similarity between the complexes. We used the SIMA method to identify 284 nonredundant binary protein-RNA complexes out of 776 such complexes in 382 nonribosomal protein-RNA structure files obtained from the RCSB database. SIMA allows rapid and quantitative comparison of protein-RNA interfaces and may be useful for interface classification with potential functional and evolutionary implications.


Subject(s)
Models, Molecular , Proteins/chemistry , Proteins/metabolism , RNA/chemistry , RNA/metabolism , Amino Acid Sequence , Base Sequence , Molecular Sequence Data , Nucleic Acid Conformation , Protein Binding , Protein Conformation
19.
J Biomed Biotechnol ; 2009: 520283, 2009.
Article in English | MEDLINE | ID: mdl-19300523

ABSTRACT

IbeR is a regulator present in meningitic Escherichia coli strain E44 that carries a loss-of-function mutation in the stationary-phase (SP) regulatory gene rpoS. In order to determine whether IbeR is an SP regulator in E44, two-dimensional gel electrophoresis and LC-MS were used to compare the proteomes of a noninvasive ibeR deletion mutant BR2 and its parent strain E44 in the SP. Four up-regulated (TufB, GapA, OmpA, AhpC) and three down-regulated (LpdA, TnaA, OpmC) proteins in BR2 were identified when compared to E44. All these proteins contribute to energy metabolism or stress resistance, which is related to SP regulation. One of the down-regulated proteins, tryptophanase (TnaA), which is regulated by RpoS in other E. coli strains, is associated with SP regulation via production of a signal molecule indole. Our studies demonstrated that TnaA was required for E44 invasion, and that indole was able to restore the noninvasive phenotype of the tnaA mutant. The production of indole was significantly reduced in BR2, indicating that ibeR is required for the indole production via tnaA. Survival studies under different stress conditions indicated that IbeR contributed to bacteria stress resistance in the SP. Taken together, IbeR is a novel regulator contributing to the SP regulation.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/genetics , S Phase/genetics , Sigma Factor/metabolism , Bacterial Proteins/genetics , Cells, Cultured , Electrophoresis, Gel, Two-Dimensional , Escherichia coli/metabolism , Escherichia coli/pathogenicity , Escherichia coli/physiology , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Humans , Indoles/metabolism , Meningitis, Escherichia coli/microbiology , Mutation , Proteomics , Sigma Factor/genetics , Stress, Physiological , Tryptophanase/metabolism
20.
Genet Vaccines Ther ; 7: 13, 2009 Dec 30.
Article in English | MEDLINE | ID: mdl-20042112

ABSTRACT

BACKGROUND: Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. METHODS: A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. RESULTS: Vectors that contained the ADA LCR were preferentially expressed in T-cell lines. Further improvements in T-cell specific gene expression were observed with the incorporation of additional cis-regulatory elements, such as a human polyadenylation signal and intron 7 from the human ADA gene. CONCLUSION: These studies suggest that the combination of an authentically regulated ADA gene in a murine retroviral vector, together with additional locus-specific regulatory refinements, will yield a vector with a safer profile and greater efficacy in terms of high-level, therapeutic, regulated gene expression for the treatment of ADA-deficient severe combined immunodeficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...