Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 77(4): 959-970, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36715204

ABSTRACT

Hybridization is a common process that has broadly impacted the evolution of multicellular eukaryotes; however, how ecological factors influence this process remains poorly understood. Here, we report the findings of a 3-year recapture study of the Bryant's woodrat (Neotoma bryanti) and desert woodrat (Neotoma lepida), two species that hybridize within a creosote bush (Larrea tridentata) shrubland in Whitewater, CA, USA. We used a genotype-by-sequencing approach to characterize the ancestry distribution of individuals across this hybrid zone coupled with Cormack-Jolly-Seber modeling to describe demography. We identified a high frequency of hybridization at this site with ~40% of individuals possessing admixed ancestry, which is the result of multigenerational backcrossing and advanced hybrid-hybrid crossing. F1, F2, and advanced generation hybrids had apparent survival rates similar to parental N. bryanti, while parental and backcross N. lepida had lower apparent survival rates and were far less abundant. Compared to bimodal hybrid zones where hybrids are often rare and selected against, we find that hybrids at Whitewater are common and have comparable survival to the dominant parental species, N. bryanti. The frequency of hybridization at Whitewater is therefore likely limited by the abundance of the less common parental species, N. lepida, rather than selection against hybrids.


Subject(s)
Hybridization, Genetic , Sigmodontinae , Humans , Animals , Sigmodontinae/genetics , Nucleic Acid Hybridization
2.
Sci Rep ; 11(1): 20508, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654859

ABSTRACT

Population genetic analyses can evaluate how evolutionary processes shape diversity and inform conservation and management of imperiled species. Taimen (Hucho taimen), the world's largest freshwater salmonid, is threatened, endangered, or extirpated across much of its range due to anthropogenic activity including overfishing and habitat degradation. We generated genetic data using high throughput sequencing of reduced representation libraries for taimen from multiple drainages in Mongolia and Russia. Nucleotide diversity estimates were within the range documented in other salmonids, suggesting moderate diversity despite widespread population declines. Similar to other recent studies, our analyses revealed pronounced differentiation among the Arctic (Selenge) and Pacific (Amur and Tugur) drainages, suggesting historical isolation among these systems. However, we found evidence for finer-scale structure within the Pacific drainages, including unexpected differentiation between tributaries and the mainstem of the Tugur River. Differentiation across the Amur and Tugur basins together with coalescent-based demographic modeling suggests the ancestors of Tugur tributary taimen likely diverged in the eastern Amur basin, prior to eventual colonization of the Tugur basin. Our results suggest the potential for differentiation of taimen at different geographic scales, and suggest more thorough geographic and genomic sampling may be needed to inform conservation and management of this iconic salmonid.


Subject(s)
Animal Distribution , Endangered Species , Genetic Variation , Salmonidae/genetics , Animals , Biological Evolution , Conservation of Natural Resources , Mongolia , Phylogeography , Rivers , Russia
SELECTION OF CITATIONS
SEARCH DETAIL
...