Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nano Lett ; 20(3): 1598-1606, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-31951415

ABSTRACT

In this Letter, we show how advanced hierarchical structures of topological defects in the so-called smectic oily streaks can be used to sequentially transfer their geometrical features to gold nanospheres. We use two kinds of topological defects, 1D dislocations and 2D ribbon-like topological defects. The large trapping efficiency of the smectic dislocation cores not only surpasses that of the elastically distorted zones around the cores but also surpasses the one of the 2D ribbon-like topological defect. This enables the formation of a large number of aligned NP chains within the dislocation cores that can be quasi-fully filled without any significant aggregation outside of the cores. When the NP concentration is large enough to entirely fill the dislocation cores, the LC confinement varies from 1D to 2D. We demonstrate that the 2D topological defect cores induce a confinement that leads to planar hexagonal networks of NPs. We then draw the phase diagram driven by NP concentration, associated with the sequential confinements induced by these two kinds of topological defects. Owing to the excellent large-scale order of these defect cores, not only the NP chains but also the NP hexagonal networks can be oriented along the desired direction, suggesting a possible new route for the creation of either 1D or 2D highly anisotropic NP networks. In addition, these results open rich perspectives based on the possible creation of coexisting NP assemblies of different kinds, localized in different confining areas of a same smectic film that would thus interact thanks to their proximity but also would interact via the surrounding soft matter matrix.

2.
Langmuir ; 35(52): 16970-16977, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31804835

ABSTRACT

The phase detection in the dynamic mode of the atomic force microscopes is a known technique for mapping nanoscale surface heterogeneities. We present here an additional functionality of this technique, which allows high-resolution imaging of embedded inorganic nanoparticles with diameter and interparticle distances of a few nanometers. The method is based on a highly nonlinear tip-sample interaction occurring markedly above the nanoparticles, giving thus a high phase contrast between zones with and without nanoparticles. A relationship between the tip-sample interaction strength and the phase signal is established in experiments and from calculations conducted with the model developed by Haviland et al. [ Soft Matter 2016 , 12 , 619 ], which is based on solving a combined equation of motion for both the cantilever and surface while taking into account the time-varying interaction forces. The nonlinear phase behavior at the origin of the subnanometer spatial resolution is found by numerical analyses to be the result of a local mechanical stiffening of the zone containing nanoparticles, which is enhanced by 2 orders of magnitude or more.

3.
Molecules ; 24(22)2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31739495

ABSTRACT

Dendrons consisting of two phosphonate functions and three oligo(ethylene glycol) (OEG) chains grafted on a central phenoxyethylcarbamoylphenoxy group were synthesized and investigated as Langmuir monolayers at the surface of water. The OEG chain in the para position was grafted with a t-Bu end-group, a hydrocarbon chain, or a partially fluorinated chain. These dendrons are models of structurally related OEG dendrons that were found to significantly improve the stability of aqueous dispersions of iron oxide nanoparticles when grafted on their surface. Compression isotherms showed that all OEG dendrons formed liquid-expanded Langmuir monolayers at large molecular areas. Further compression led to a transition ascribed to the solubilization of the OEG chains in the aqueous phase. Brewster angle microscopy (BAM) provided evidence that the dendrons fitted with hydrocarbon chains formed liquid-expanded monolayers throughout compression, whilst those fitted with fluorinated end-groups formed crystalline-like domains, even at large molecular areas. Dimyristoylphosphatidylcholine and dendron molecules were partially miscible in monolayers. The deviations to ideality were larger for the dendrons fitted with a fluorocarbon end-group chain than for those fitted with a hydrocarbon chain. Brewster angle microscopy and atomic force microscopy supported the view that the dendrons were ejected from the phospholipid monolayer during the OEG conformational transition and formed crystalline domains on the surface of the monolayer.


Subject(s)
Dendrimers/chemistry , Ethylene Glycol/chemistry , Phospholipids/chemistry , Water/chemistry , Air , Microscopy, Atomic Force , Surface Properties
4.
ACS Nano ; 9(12): 11678-89, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26521895

ABSTRACT

We investigated composite films of gold nanoparticles (NPs)/liquid crystal (LC) defects as a model system to understand the key parameters, which allow for an accurate control of NP anisotropic self-assemblies using soft templates. We combined spectrophotometry, Raman spectroscopy, and grazing incidence small-angle X-ray scattering with calculations of dipole coupling models and soft sphere interactions. We demonstrate that dense arrays of elementary edge dislocations can strongly localize small NPs along the defect cores, resulting in formation of parallel chains of NPs. Furthermore, we show that within the dislocation cores the inter-NP distances can be tuned. This phenomenon appears to be driven by the competition between "soft (nano)sphere" attraction and LC-induced repulsion. We evidence two extreme regimes controlled by the solvent evaporation: (i) when the solvent evaporates abruptly, the spacing between neighboring NPs in the chains is dominated by van der Waals interactions between interdigitated capping ligands, leading to chains of close-packed NPs; (ii) when the solvent evaporates slowly, strong interdigitation between the is avoided, leading to a dominating LC-induced repulsion between NPs associated with the replacement of disordered cores by NPs. The templating of NPs by topological defects, beyond the technological inquiries, may enable creation, investigation, and manipulation of unique collective features for a wide range of nanomaterials.

5.
Chemistry ; 21(22): 8019-22, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25877208

ABSTRACT

Amphiphilic pillar[5]arene-containing [2]rotaxanes have been prepared and fully characterized. In the particular case of the [2]rotaxane incorporating a 1,4-diethoxypillar[5]arene subunit, the structure of the compound was confirmed by X-ray crystal structure analysis. Owing to a good hydrophilic/hydrophobic balance, stable Langmuir films have been obtained for these rotaxanes and the size of the peripheral alkyl chains on the pillar[5]arene subunit has a dramatic influence on the reversibility during compression-decompression cycles. Indeed, when these are small enough, molecular reorganization of the rotaxane by gliding motions are capable of preventing strong π-π interactions between neighboring macrocycles in the thin film.

6.
Chemphyschem ; 15(12): 2440-4, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-24953549

ABSTRACT

We show that water-soluble monosodic salts of F-alkyl phosphates C(n)F(2n+1) (CH2)2OP(O)(OH)2, with n=8 and 10 (F8H2Phos and F10H2Phos) form Gibbs films with exceptionally high dilational viscoelastic modules E that reach ~900 mN m(-1) in the condensed phases. These E values are up to one order of magnitude larger than those recorded for phospholipid, protein and polymer films commonly considered as highly viscoelastic. F8H2Phos.1Na undergoes a transition between a liquid-expanded and a liquid-condensed phase. In the case of F10H2Phos.1Na, a transition occurs between a gas phase of surface domains, in which the molecules are densely packed, and a liquid-condensed phase.

7.
Nanoscale ; 5(4): 1507-16, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23306456

ABSTRACT

Self-assembly of nanoparticles (NPs) into tailored structures is a promising strategy for the production and design of materials with new functions. In this work, 2D arrays of iron oxide NPs with interparticle distances tuned by grafting fatty acids and dendritic molecules at the NPs surface have been obtained over large areas with high density using the Langmuir-Blodgett technique. The anchoring agent of molecules and the Janus structure of NPs are shown to be key parameters driving the deposition. Finally the influence of interparticle distance on the collective magnetic properties in powders and in monolayers is clearly demonstrated by DC and AC SQUID measurements. The blocking temperature T(B) increases as the interparticle distance decreases, which is consistent with the fact that dipolar interactions are responsible for this increase. Dipolar interactions are found to be stronger for particles assembled in thin films compared to powdered samples and may be described by using the Vogel Fulcher model.


Subject(s)
Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Models, Chemical , Computer Simulation , Dendrimers/chemistry , Magnetic Fields , Materials Testing , Powders
8.
J Am Chem Soc ; 135(7): 2708-22, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23339604

ABSTRACT

Single molecule magnets (SMM) may be considered for the construction of future integrated nanodevices, provided however that some degree of ordering is imparted to these molecules (surfaces nanostructuration). Combining such nanoobjects with liquid-crystalline orderings to control their assembly and to potentially address them individually therefore appears as one promising strategy. Four mesomorphic, mixed-valent [Mn(III)(8)Mn(IV)(4)O(12)(L(x,y,z-CB))(16)(H(2)O)(4)] SMM, differing in the number of liquid-crystalline promoters, (L(x,y,z-CB)), were synthesized, and their self-organizing and magnetic properties were investigated. The influence of the peripheral modifications, and precisely how supramolecular ordering and magnetic properties may be affected by the evolution of the proto-mesogenic cyanobiphenyl-based ligands substitution pattern, was explored. Small-angle X-ray scattering studies revealed that all of the hybridized clusters self-organize into room-temperature bilayer smectic phases, mandated by the specific mesogenic functionalization and that the polymetallic cores are further organized according to a short-range pseudo-2D lattice with hexagonal and/or square symmetry. All mesomorphous hybridized dodecamanganese complexes still behave as SMM: they exhibit blocking of the magnetization at about 2.6 K as evidenced by the occurrence of frequency-dependent out-of-phase ac susceptibility signals as well as an opening of the hysteresis cycle with coercive fields varying between 0.13 and 0.6 T, depending on the surface ligands topology. Comparison of the magnetic properties within this series reveals intricate correlations between the structural features of the mesomorphous molecule magnet (i.e., symmetry of the ligands substitution patterns, molecular conformation, average intercluster distances, and respective inclination) with respect to the relative proportion of slow- and fast-relaxing species and the absolute values of the coercive fields.

9.
Nanoscale ; 4(17): 5244-58, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22814797

ABSTRACT

Gold nanoparticles currently elicit an intense and very broad research activity because of their peculiar properties. Be it in catalysis, optics, electronics, sensing or theranostics, new applications are found daily for these materials. Approximately a decade ago a report was published with magnetometry data showing that gold nanoparticles, most surprisingly, could also be magnetic, with features that the usual rules of magnetism were unable to explain. Many ensuing experimental papers confirmed this observation, although the reported magnetic behaviours showed a great variability, for unclear reasons. In this review, most of the experimental facts pertaining to "magnetic gold" are summarized. The various theories put forth for explaining this unexpected magnetism are presented and discussed. We show that despite much effort, a satisfying explanation is still lacking and that the field of hypotheses should perhaps be widened.

11.
Beilstein J Org Chem ; 8: 349-70, 2012.
Article in English | MEDLINE | ID: mdl-22509204

ABSTRACT

Liquid-crystalline nanoparticles represent an exciting class of new materials for a variety of potential applications. By combining supramolecular ordering with the fluid properties of the liquid-crystalline state, these materials offer the possibility to organise nanoparticles into addressable 2-D and 3-D arrangements exhibiting high processability and self-healing properties. Herein, we review the developments in the field of discrete thermotropic liquid-crystalline nanoparticle hybrids, with special emphasis on the relationship between the nanoparticle morphology and the nature of the organic ligand coating and their resulting phase behaviour. Mechanisms proposed to explain the supramolecular organisation of the mesogens within the liquid-crystalline phases are discussed.

12.
Chemphyschem ; 13(6): 1454-62, 2012 Apr 23.
Article in English | MEDLINE | ID: mdl-22431371

ABSTRACT

Nonpolar fluorophilic/lipophilic tetrablock amphiphiles are investigated on the surface of water and on solid substrates using compression isotherms, Brewster angle microscopy, and atomic force microscopy. At low pressures, the tetrablocks form monolayers of closely packed surface hemimicelles. Further compression causes a 2D/3D transition. At the end of the plateau, half of the deposited material is expelled forming a second monolayer on top of the initially formed monolayer. Both layers of the films consist of surface micelles, thus providing the first example of spontaneous or compression-driven stacking of self-assembled nano-objects.


Subject(s)
Micelles , Calcitriol/analogs & derivatives , Calcitriol/chemistry , Fluorine/chemistry , Surface Properties , Surface-Active Agents/chemistry , Temperature
13.
Macromol Rapid Commun ; 32(20): 1627-33, 2011 Oct 18.
Article in English | MEDLINE | ID: mdl-22242218

ABSTRACT

DUV interferometric lithography and diblock copolymer self-organization have successfully been combined to provide a simple and highly collective nanopatterning technique enabling the organization of nanoparticles over several orders of magnitude, from nanometre to millimetre. The nanostructural changes at the surface of the polymer film after thermal annealing have been monitored by AFM and the process parameters optimized for obtaining a long-range organization of the lamellar domains. In particular, the impact of the annealing conditions and geometric parameters of the substrate patterns have been investigated. The nanopatterns resulting from the lamellar demixion of (PS-b-MMA) were used for a controlled deposition of nanoparticles. The affinity of the hydrophobic particles for the PS block was demonstrated, opening new doors towards the preparation of high-density arrays of nanoparticles with potential applications in data storage.


Subject(s)
Interferometry/methods , Nanoparticles/chemistry , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions , Interferometry/instrumentation , Polymers/chemical synthesis
14.
Chemistry ; 16(24): 7186-98, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20468031

ABSTRACT

Understanding and controlling the molecular organization of amphiphilic molecules at interfaces is essential for materials and biological sciences. When spread on water, the model amphiphiles constituted by C(n)F(2n+1)C(m)H(2m+1) (FnHm) diblocks spontaneously self-assemble into surface hemimicelles. Therefore, compression of monolayers of FnHm diblocks is actually a compression of nanometric objects. Langmuir films of F8H16, F8H18, F8H20, and F10H16 can actually be compressed far beyond the "collapse" of their monolayers at approximately 30 A(2). For molecular areas A between 30 and 10 A(2), a partially reversible, 2D/3D transition occurs between a monolayer of surface micelles and a multilayer that coexist on a large plateau. For A<10 A(2), surface pressure increases again, reaching up to approximately 48 mN m(-1) before the film eventually collapses. Brewster angle microscopy and AFM indicate a several-fold increase in film thickness when scanning through the 2D/3D coexistence plateau. Compression beyond the plateau leads to a further increase in film thickness and, eventually, to film disruption. Reversibility was assessed by using compression-expansion cycles. AFM of F8H20 films shows that the initial monolayer of micelles is progressively covered by one (and eventually two) bilayers, which leads to a hitherto unknown organized composite arrangement. Compression of films of the more rigid F10H16 results in crystalline-like inflorescences. For both diblocks, a hexagonal array of surface micelles is consistently seen, even when the 3D structures eventually disrupt, which means that this monolayer persists throughout the compression experiments. Two examples of pressure-driven transformations of films of self-assembled objects are thus provided. These observations further illustrate the powerful self-assembling capacity of perfluoroalkyl chains.


Subject(s)
Alkanes/chemistry , Fluorocarbons/chemistry , Nanostructures/chemistry , Micelles , Microscopy, Atomic Force , Motion Pictures , Physical Phenomena , Surface Properties
15.
Toxicol In Vitro ; 24(5): 1386-94, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20460148

ABSTRACT

Interest in contrast agent's (CA) neurotoxicity has greatly increased due to the growing need of new compounds dedicated to brain imaging. Magnetic resonance imaging (MRI) CA have been evaluated by means of different toxicological assays with cultured rat primary neurons (evaluation of neurite specific parameters via immunostaining of the cells and LDH leakage). To determine the potential neurotoxicity of a precise paramagnetic ion in a defined structure (architecture and molecular weight), novel hydrosoluble dendritic Manganese (II) and Gadolinium (III) complexes derived from diethylenetriamine pentaacetic acid (DTPA) have been studied and compared to a linear homologue (same molecular weight) and commercially available low molecular weight MRI CA like Mn-DPDP (Teslascan, GE Healthcare) and Gd-DTPA (Magnevist, Schering). The range of CA concentrations studied was 0.1-10mM, suitable for MRI examinations. This set of experiments allows a toxicity ranking of these reagents as a function of molecular structure and nature of the paramagnetic ion. We could determine that the architecture (linear vs. dendritic) does not play an important role in the in vitro neurotoxicity, whereas the structure of the chelating cage is of greater importance.


Subject(s)
Contrast Media/toxicity , Edetic Acid/analogs & derivatives , Gadolinium DTPA/toxicity , Magnetic Resonance Imaging , Neurons/drug effects , Pyridoxal Phosphate/analogs & derivatives , Animals , Cells, Cultured , Contrast Media/chemistry , Edetic Acid/chemistry , Edetic Acid/toxicity , Gadolinium DTPA/chemistry , Lactate Dehydrogenases/metabolism , Neurons/enzymology , Pyridoxal Phosphate/chemistry , Pyridoxal Phosphate/toxicity , Rats
17.
Bioconjug Chem ; 20(4): 760-7, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19368343

ABSTRACT

A new dendritic manganese(II) chelate 1 has been evaluated by in vivo (relaxivity) and in vitro (toxicity and relaxivity) experiments as a manganese enhanced magnetic resonance imaging (MEMRI) contrast agent. Also, a comparison with its corresponding gadolinium(III) homologue 2 and the commercially available MEMRI agent MnDPDP (Teslascan, Amersham Health) was achieved in order to determine respectively the real influence of the paramagnetic ion in terms of toxicity and relaxivity for this precise treelike structure and the potential of 1 to be a favorable candidate for brain-targeting MRI. Complexes 1 and 2 displayed high hydrosolubility (0.1 M) and revealed no in vitro neuronal toxicity at concentrations as high as 1 mM. Considering manganese(II) complex 1, the in vivo nontoxicity at 20 mM (100% rats survival) is very likely due to a slow diffusion of the compound, meaning a controlled release of the paramagnetic ions. Finally, T(1) relaxivity of 4.2 mM(-1).s(-1) for 2 and T(2) relaxivity of 17.4 mM(-1).s(-1) for 1 at 4.7 T were measured and are higher than that of the commercial MRI contrast agents GdDTPA and MnDPDP, respectively.


Subject(s)
Contrast Media/chemistry , Dendrimers/chemistry , Manganese/chemistry , Animals , Contrast Media/pharmacokinetics , Contrast Media/toxicity , Dendrimers/pharmacokinetics , Dendrimers/toxicity , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Imaging , Magnetics , Molecular Weight , Pentetic Acid/chemistry , Rats , Sensitivity and Specificity , Solubility , Tissue Distribution
18.
J Phys Chem B ; 113(3): 734-8, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19105685

ABSTRACT

The formation of ferrimagnetic films of 39 nm magnetite nanoparticles functionalized by stilbene derivatives has been studied using the Langmuir-Blodgett technique. The stilbene moieties are grafted to the particles either via a phosphonate or a carboxylate group; in both cases the nanoparticles display similar isotherms although the microscopic initial and final states of the films are different. Two different mechanisms of film formation are proposed, based on the inorganic-organic bond stability.

19.
Adv Mater ; 21(43): 4323-33, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-26042938

ABSTRACT

Recent advances on the organization and characterization of [Mn12] single molecule magnets (SMMs) on a surface or in 3D are reviewed. By using nonconventional techniques such as X-ray magnetic circular dichroism (XMCD) and scanning tunneling microscopy (STM), it is shown that [Mn12]-based SMMs deposited on a surface lose their SMM behavior, even though the molecules seem to be structurally undamaged. A new approach is reported to get high-density information-storage devices, based on the 3D assembling of SMMs in a liquid crystalline phase. The 3D nanostructure exhibits the anisotropic character of the SMMs, thus opening the way to address micrometric volumes by two photon absorption using the pump-probe technique. We present recent developments such as µ-SQUID, magneto-optical Kerr effect (MOKE), or magneto-optical circular dichroism (MOCD), which enable the characterization of SMM nanostructures with exceptional sensitivity. Further, the spin-polarized version of the STM under ultrahigh vacuum is shown to be the key tool for addressing not only single molecule magnets, but also magnetic nano-objects.

SELECTION OF CITATIONS
SEARCH DETAIL
...