Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(10): eadj3460, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38446893

ABSTRACT

We examine the characteristics and causes of southeast Australia's Tinderbox Drought (2017 to 2019) that preceded the Black Summer fire disaster. The Tinderbox Drought was characterized by cool season rainfall deficits of around -50% in three consecutive years, which was exceptionally unlikely in the context of natural variability alone. The precipitation deficits were initiated and sustained by an anomalous atmospheric circulation that diverted oceanic moisture away from the region, despite traditional indicators of drought risk in southeast Australia generally being in neutral states. Moisture deficits were intensified by unusually high temperatures, high vapor pressure deficits, and sustained reductions in terrestrial water availability. Anthropogenic forcing intensified the rainfall deficits of the Tinderbox Drought by around 18% with an interquartile range of 34.9 to -13.3% highlighting the considerable uncertainty in attributing droughts of this kind to human activity. Skillful predictability of this drought was possible by incorporating multiple remote and local predictors through machine learning, providing prospects for improving forecasting of droughts.


Subject(s)
Climate Change , Droughts , Humans , Australia , Cold Temperature , Machine Learning
2.
Nature ; 509(7499): 209-12, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24805345

ABSTRACT

Rapid Arctic warming and sea-ice reduction in the Arctic Ocean are widely attributed to anthropogenic climate change. The Arctic warming exceeds the global average warming because of feedbacks that include sea-ice reduction and other dynamical and radiative feedbacks. We find that the most prominent annual mean surface and tropospheric warming in the Arctic since 1979 has occurred in northeastern Canada and Greenland. In this region, much of the year-to-year temperature variability is associated with the leading mode of large-scale circulation variability in the North Atlantic, namely, the North Atlantic Oscillation. Here we show that the recent warming in this region is strongly associated with a negative trend in the North Atlantic Oscillation, which is a response to anomalous Rossby wave-train activity originating in the tropical Pacific. Atmospheric model experiments forced by prescribed tropical sea surface temperatures simulate the observed circulation changes and associated tropospheric and surface warming over northeastern Canada and Greenland. Experiments from the Coupled Model Intercomparison Project Phase 5 (ref. 16) models with prescribed anthropogenic forcing show no similar circulation changes related to the North Atlantic Oscillation or associated tropospheric warming. This suggests that a substantial portion of recent warming in the northeastern Canada and Greenland sector of the Arctic arises from unforced natural variability.


Subject(s)
Feedback , Global Warming/statistics & numerical data , Tropical Climate , Air , Arctic Regions , Canada , Greenland , Hot Temperature , Human Activities , Ice Cover , Models, Theoretical , Pacific Ocean , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...