Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 64(6): 807-27, 2009 Dec 24.
Article in English | MEDLINE | ID: mdl-20064389

ABSTRACT

Mutations in alpha-synuclein and Leucine-rich repeat kinase 2 (LRRK2) are linked to autosomal dominant forms of Parkinson's disease (PD). However, little is known about any potential pathophysiological interplay between these two PD-related genes. Here we show in transgenic mice that although overexpression of LRRK2 alone did not cause neurodegeneration, the presence of excess LRRK2 greatly accelerated the progression of neuropathological abnormalities developed in PD-related A53T alpha-synuclein transgenic mice. Moreover, we found that LRRK2 promoted the abnormal aggregation and somatic accumulation of alpha-synuclein in A53T mice, which likely resulted from the impairment of microtubule dynamics, Golgi organization, and the ubiquitin-proteasome pathway. Conversely, genetic ablation of LRRK2 preserved the Golgi structure and suppressed the aggregation and somatic accumulation of alpha-synuclein, and thereby delayed the progression of neuropathology in A53T mice. These findings demonstrate that overexpression of LRRK2 enhances alpha-synuclein-mediated cytotoxicity and suggest inhibition of LRRK2 expression as a potential therapeutic option for ameliorating alpha-synuclein-induced neurodegeneration.


Subject(s)
Brain/metabolism , Nerve Degeneration/metabolism , Parkinson Disease/metabolism , Protein Serine-Threonine Kinases/metabolism , alpha-Synuclein/metabolism , Animals , Brain/physiopathology , Disease Progression , Gene Expression Regulation/genetics , Genetic Predisposition to Disease/genetics , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice , Mice, Knockout , Mice, Transgenic , Microtubules/metabolism , Microtubules/ultrastructure , Mutation/genetics , Nerve Degeneration/genetics , Nerve Degeneration/physiopathology , Neurons/metabolism , Neurons/pathology , Parkinson Disease/genetics , Parkinson Disease/physiopathology , Protein Serine-Threonine Kinases/genetics , alpha-Synuclein/genetics
2.
J Comp Neurol ; 501(5): 731-40, 2007 Apr 10.
Article in English | MEDLINE | ID: mdl-17299754

ABSTRACT

We recently showed by electron microscopy that the postsynaptic density (PSD) from hippocampal cultures undergoes rapid structural changes after ischemia-like conditions. Here we report that similar structural changes occur after delay in transcardial perfusion fixation of the mouse brain. Delay in perfusion fixation, a condition that mimics ischemic stress, resulted in 70%, 90%, and 23% increases in the thickness of PSDs from the hippocampus (CA1), cerebral cortex (layer III), and cerebellar cortex (Purkinje spines), respectively. In step with PSD thickening, the amount of PSD-associated alpha-calcium calmodulin-dependent protein kinase II (alpha- CaMKII) label increased more in cerebral cortical spines than in Purkinje spines. Although the Purkinje PSDs thickened only slightly after delayed fixation, they became highly curved, and many formed sub-PSD spheres approximately 80 nm in diameter that labeled for CaMKII. Delayed perfusion fixation also produced more cytoplamic CaMKII clusters ( approximately 110 nm in diameter) in the somas of pyramidal cells (from hippocampus and cerebral cortex) than in Purkinje cells. Thus a short delay in perfusion fixation produces cell-specific structural changes at PSDs and neuronal somas. Purkinje cells respond somewhat differently to delayed perfusion fixation, perhaps owing to their lower levels of CaMKII, and CaMKII binding proteins at PSDs. We present here a catalogue of structural changes that signal a perfusion fixation delay, thereby providing criteria by which to assess perfusion fixation quality in experimental structural studies of brain and to shed light on the subtle changes that occur in intact brain following metabolic stress.


Subject(s)
Brain/pathology , Hypoxia-Ischemia, Brain/pathology , Oxidative Stress , Postmortem Changes , Synapses/pathology , Animals , Biomarkers/metabolism , Brain/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cerebellum/metabolism , Cerebellum/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Dendritic Spines/metabolism , Dendritic Spines/pathology , Fixatives , Hippocampus/metabolism , Hippocampus/pathology , Hypoxia-Ischemia, Brain/metabolism , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Purkinje Cells/metabolism , Purkinje Cells/pathology , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Synapses/metabolism , Synaptic Membranes/metabolism , Synaptic Membranes/pathology , Time Factors , Tissue Fixation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...