Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38998429

ABSTRACT

Interest in biodegradable implants has focused attention on the resorbable polymer polylactic acid. However, the risk of these materials promoting infection, especially in patients with existing pathologies, needs to be monitored. The enrichment of a bacterial adhesion medium with compounds that are associated with human pathologies can help in understanding how these components affect the development of infectious processes. Specifically, this work evaluates the influence of glucose and ketone bodies (in a diabetic context) on the adhesion dynamics of S. aureus to the biomaterial polylactic acid, employing different approaches and discussing the results based on the physical properties of the bacterial surface and its metabolic activity. The combination of ketoacidosis and hyperglycemia (GK2) appears to be the worst scenario: this system promotes a state of continuous bacterial colonization over time, suppressing the stationary phase of adhesion and strengthening the attachment of bacteria to the surface. In addition, these supplements cause a significant increase in the metabolic activity of the bacteria. Compared to non-enriched media, biofilm formation doubles under ketoacidosis conditions, while in the planktonic state, it is glucose that triggers metabolic activity, which is practically suppressed when only ketone components are present. Both information must be complementary to understand what can happen in a real system, where planktonic bacteria are the ones that initially colonize a surface, and, subsequently, these attached bacteria end up forming a biofilm. This information highlights the need for good monitoring of diabetic patients, especially if they use an implanted device made of PLA.

2.
Nat Commun ; 13(1): 2812, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589767

ABSTRACT

Chemically propelled micropumps are promising wireless systems to autonomously drive fluid flows for many applications. However, many of these systems are activated by nocuous chemical fuels, cannot operate at high salt concentrations, or have difficulty for controlling flow directionality. In this work we report on a self-driven polymer micropump fueled by salt which can trigger both radial and unidirectional fluid flows. The micropump is based on the cation-exchanger Nafion, which produces chemical gradients and local electric fields capable to trigger interfacial electroosmotic flows. Unidirectional pumping is predicted by simulations and achieved experimentally by nanostructuring Nafion into microarrays with a fine tune modulation of surrounding surface zeta potentials. Nafion micropumps work in a wide range of salt concentrations, are reusable, and can be fueled by different salt cations. We demonstrate that they work with the common water-contaminant cadmium, using the own capture of this ion as fuel to drive fluid pumping. Thus, this system has potential for efficient and fast water purification strategies for environmental remediation. Unidirectional Nafion pumps also hold promise for effective analyte delivery or preconcentration for (bio)sensing assays.


Subject(s)
Nanostructures , Water , Electroosmosis , Fluorocarbon Polymers
3.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112137, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34628126

ABSTRACT

Diabetes is a widely spread disease affecting the quality of life of millions of people around the world and is associated to a higher risk of developing infections in different parts of the body. The reasons why diabetes enhances infection episodes are not entirely clear; in this study our aim was to explore the changes that one of the most frequently pathogenic bacteria undergoes when exposed to hyperglycemia and ketoacidosis conditions. Physical surface properties such as hydrophobicity and surface electrical charge are related to bacterial growth behavior and the ability of Staphylococcus aureus to form biofilms. The addition of glucose made bacteria more negatively charged and with moderate-intermediate hydrophobicity. Ketone bodies increased hydrophobicity to approximately 75% and pathological concentrations hindered some of the bacterial surface charge by decreasing the negative zeta potential of cells. When both components were present, the bacterial physical surface changes were more similar to those observed in ketone bodies, suggesting a preferential adsorption of ketone bodies over glucose because of the more favorable solubility of glucose in water. Glucose diabetic concentrations gave the highest number of bacteria in the stationary phase of growth and provoked an increase in the biofilm slime index of around 400% in relation to the control state. Also, this situation is related with an increase of bacterial coverage. The combination of a high concentration of glucose and ketone bodies, which corresponds to a poorly controlled diabetic situation, appears associated with an early infection phase; increased hydrophobic attractive force and reduced electrostatic repulsion between cells results in better packing of cells within the biofilm and more efficient retention to the host surface. Knowledge of bacterial response in high amount of glucose and ketoacidosis environments can serve as a basis for designing strategies to prevent bacterial adhesion, biofilm formation and, consequently, the development of infections.


Subject(s)
Hyperglycemia , Ketosis , Bacterial Adhesion , Biofilms , Humans , Quality of Life , Staphylococcus aureus , Surface Properties
4.
Polymers (Basel) ; 13(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34960840

ABSTRACT

The study of the surface properties of materials is key in determining whether the material will be suitable for medical purposes. One of these properties is hydrophobicity, which is important when assessing its behavior against bacterial adhesion. In this work, we have studied the influence of the solvent (chloroform, acetone, and tetrahydrofuran) and the substrate (glass, PTFE, silicone, and Ti6Al4V) on which polylactic acid is deposited in solution to manufacture films by solvent-casting. Thus, it has been found that there are no significant differences in hydrophobicity and surface tension among the solvents evaluated, but there are significant differences with respect to the substrates: PLA films casted on silicone are hydrophobic, while those casted on the rest of the substrates are hydrophilic. This is related to the fact that the silicone interacts with the polymer modifying its spatial arrangement, exposing its methyl groups towards the interface with the air. In this way, it has been shown that, when manufacturing PLA films, it is important to choose the right surface on which to deposit them, depending on their desired function.

5.
Materials (Basel) ; 14(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34885570

ABSTRACT

Adpsortion of protein layers on biomaterials plays an important role in the interactions between implants and the bio-environment. In this context, human serum albumin (HSA) layers have been deposited on modified Ti6Al4V surfaces at different ultraviolet (UV-C) irradiation times to observe possible changes in the adsorbed protein layer. Protein adsorption was done from solutions at concentraions lower than the serum protein concentration, to follow the surface modifications at the beginning of the albumin adhesion process. For this purpose, the surface of the protein-coated samples has been characterized by time of flight secondary ion mass spectrometry (ToF-SIMS), contact angle and zeta potential measurements. The results obtained show a reduction in the total surface tension and zeta potential of samples treated with UV-C light when coated with a protein layer. Furthermore, the UV-C light treatment applied to titanium alloy surfaces is able to modify the conformation, orientation and packing of the proteins arranged in the adsorbed layer. Low irradiation time generates an unstable surface with the lowest protein adsorption and the highest hydrophobic/hydrophilic protein ratio, indicating a possible denaturalization of the protein on these surfaces. However, surface changes are stabilized after 15 h or UV-C irradiation, favoring the protein adsorption through electrical interactions.

6.
Molecules ; 26(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34443399

ABSTRACT

Polylactic acid (PLA) is a good candidate for the manufacture of polymeric biodegradable biomaterials. The inclusion of metallic particles and surfactants solves its mechanical limitations and improves its wettability, respectively. In this work, cetyltrimethylammonium bromide (CTAB) and magnesium particles have been incorporated into PLA films to evaluate the changes produced in the polymeric matrix cast on glass and silicone substrates. For this purpose, the surface of the films has been characterized by means of contact angle measurements and ToF-SIMS. Depth profiles and SEM images of the cross sections of the films have also been obtained to study their morphology. The results show that the CTAB in the polymer matrix with and without magnesium improves the wettability of the films, making them more suitable for cell adhesion. The higher the hydrophilicity, the higher the surfactant concentration. The depth profiles show, for the first time, that, depending on the surfactant concentration and the presence of Mg, there is a layer-like distribution near the surface where, in addition to the CTAB + PLA mixture, a surfactant exclusion zone can be seen. This new structure could be relevant in in vitro/in vivo situations when the degradation processes remove the film components in a sequential form.

7.
Phys Chem Chem Phys ; 23(26): 14477-14485, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34184006

ABSTRACT

The so-called geometric factor defined in electrokinetic cells, L/S (L being the length and S the cross-section of the channel), is relevant for providing the surface interaction electrical potential (zeta potential, ζ) of large surfaces, such as those used in the design of biomedical devices or water purification systems. Conversely, recent studies demonstrate that this factor is also employed to determine geometrical parameters, such as porosity in membrane-like systems. This factor, which has been attributed exclusively a geometrical character, can also be obtained from the electrical conductivity and resistance of the electrokinetic channel. In this work, we assess whether these two ways of obtaining the L/S factor are equivalent and how possible deviations can affect the value of the zeta potential. For this purpose, we work with channels of different geometries obtained by 3D printing using PLA (polylactic acid) as a polymer employed in biomedical applications. The discrepancies between the L/S factor obtained by electrical and purely geometrical measurements increase as the geometrical L/S factor becomes larger, reaching differences close to 80%. The results show that the so-called geometrical L/S factor also has an important electrical contribution and would be better denoted as electrogeometric factor. The differences found between the L/S factors are also propagated to the calculation of ζ but an optimum conductivity zone (from about 10 to 40 mS m-1) can be defined to obtain the zeta potential by selecting any of the L/S factors obtained from electrokinetic measurements. The results of this work should be taken into account in those investigations that use the L/S factor to obtain the geometry-porosity of permeable materials.

8.
Colloids Surf B Biointerfaces ; 191: 110996, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32272388

ABSTRACT

Magnesium is currently increasing interest in the field of biomaterials. An extensive bibliography on this material in the last two decades arises from its potential for the development of biodegradable implants. In addition, many researches, motivated by this progress, have analyzed the performance of magnesium in both in vitro and in vivo assays with gram-positive and gram-negative bacteria in a very broad range of conditions. This review explores the extensive literature in recent years on magnesium in biomaterials-related infections, and discusses the mechanisms of the Mg action on bacteria, as well as the competition of Mg2+ and/or synergy with other divalent cations in this subject.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Magnesium/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Magnesium/chemistry , Microbial Sensitivity Tests , Optical Imaging , Particle Size , Surface Properties
9.
Colloids Surf B Biointerfaces ; 185: 110617, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31740326

ABSTRACT

New biocompatible and bioabsorbable materials are currently being developed for bone regeneration. These serve as scaffolding for controlled drug release and prevent bacterial infections. Films of polylactic acid (PLA) polymers that are Mg-reinforced have demonstrated they have suitable properties and bioactive behavior for promoting the osseointegration process. However little attention has been paid to studying whether the degradation process can alter the adhesive physical properties of the biodegradable film and whether this can modify the biofilm formation capacity of pathogens. Moreover, considering that the concentration of Mg and other corrosion products may not be constant during the degradation process, the question that arises is whether these changes can have negative consequences in terms of the bacterial colonization of surfaces. Bacteria are able to react differently to the same compound, depending on its concentration in the medium and can even become stronger when threatened. In this context, physical surface parameters such as hydrophobicity, surface tension and zeta potential of PLA films reinforced with 10% Mg have been determined before and after degradation, as well as the biofilm formation capacity of Staphylococcus epidermidis. The addition of Mg to the films makes them less hydrophobic and the degradation also reduces the hydrophobicity and increases the negative charge of the surface, especially over long periods of time. Early biofilm formation at 8 h is consistent with the physical properties of the films, where we can observe a reduction in the bacterial biofilm formation. However, after 24 h of incubation, the biofilm formation increases significantly on the PLA/Mg films with respect to PLA control. The explosive release of Mg ions and other corrosion products within the first hours were not enough to prevent a greater biofilm formation after this initial time. Consequently, the Mg addition to the polymer matrix had a bacteriostatic effect but not a bactericidal one. Future works should aim to optimize the design and biofunctionality of these promising bioabsorbable composites for a degradation period suitable for the intended application.


Subject(s)
Biofilms/drug effects , Magnesium/pharmacology , Microbial Viability/drug effects , Polyesters/pharmacology , Bacteria/drug effects , Bacteria/ultrastructure , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Optical Imaging , Static Electricity , Surface Properties , Water/chemistry
10.
Biomed Res Int ; 2019: 1437806, 2019.
Article in English | MEDLINE | ID: mdl-31915679

ABSTRACT

Controlling initial bacterial adhesion is essential to prevent biofilm formation and implant-related infection. The search for surface coatings that prevent initial adhesion is a powerful strategy to obtain implants that are more resistant to infection. Tracking the progression of adhesion on surfaces from the beginning of the interaction between bacteria and the surface provides a deeper understanding of the initial adhesion behavior. To this purpose, we have studied the progression over time of bacterial adhesion from a laminar flow of a bacterial suspension, using a modified Robbins device (MRD). Comparing with other laminar flow devices, such as the parallel plate flow chamber, MRD allows the use of diverse substrata under the same controlled flow conditions simultaneously. Two different surfaces of Ti6Al4V and two strains of Staphylococcus epidermidis with different exopolymer production were tested. In addition, the modified Robbins device was examined for its convenience and suitability for the purpose of this study. Results were analyzed according to a pseudofirst order kinetic. The values of the parameters obtained from this model make it possible to discriminate the adhesive behavior of surfaces and bacteria. One of the fitting parameters depends on the bacterial strain and the other only on the surface properties of the substrate.


Subject(s)
Bacterial Adhesion/physiology , Extracellular Polymeric Substance Matrix/metabolism , Staphylococcus epidermidis , Titanium/chemistry , Alloys , Biofilms , Kinetics , Staphylococcus epidermidis/metabolism , Staphylococcus epidermidis/physiology
11.
J Orthop Traumatol ; 18(1): 59-67, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27137674

ABSTRACT

BACKGROUND: Biomaterial-associated infections are one of the most important complications in orthopedic surgery. The main goal of this study was to demonstrate the in vivo bactericidal effect of ultraviolet (UV) irradiation on Ti6Al4V surfaces. MATERIALS AND METHODS: An experimental model of device-related infections was developed by direct inoculation of Staphylococcus aureus into the canal of both femurs of 34 rats. A UV-irradiated Ti6Al4V pin was press-fit into the canal by retrograde insertion in one femur and the control pin was inserted into the contralateral femur. To assess the efficacy of UV radiation, the mean colony counts after inoculation in the experimental subjects and the control group were compared at different times of sacrifice and at different inoculum doses. RESULTS: At 72 h, the mean colony counts after inoculation in experimental femurs were significantly lower than those of the control group, with a reduction percentage of 76 % (p = 0.041). A similar difference between control and experimental pins was observed at 24 h using an inoculum dose <104 colony-forming units (CFU), for which the reduction percentage was 70.48 % (p = 0.017). CONCLUSION: The irradiated surface of Ti6Al4V is able to reduce early bacterial colonization of Ti6AlV pins located in the medullar channel and in the surrounding femur. The reductions depend on the initial inoculums used to cause infection in the animals and the greatest effects are detected for inoculums <104 CFU. LEVEL OF EVIDENCE: Not applicable.


Subject(s)
Internal Fixators , Prosthesis-Related Infections/prevention & control , Staphylococcal Infections/prevention & control , Titanium/radiation effects , Ultraviolet Rays , Alloys , Animals , Disease Models, Animal , Male , Rats , Rats, Wistar
12.
J Biomed Mater Res A ; 104(4): 866-78, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26662548

ABSTRACT

In this work, we investigated a new approach to incorporate Mg particles within a PDLLA matrix using a solvent-free commercially available process. PDLLA/Mg composites were manufactured by injection moulding and the effects of Mg incorporated into PDLLA on MSC and macrophage responses were evaluated. Small amounts of Mg particles (≤ 1 wt %) do not cause thermal degradation of PDLLA, which retains its mechanical properties. PDLLA/Mg composites release hydrogen, alkaline products and Mg(2+) ions without changing pH of culture media. Mg-containing materials provide a noncytotoxic environment that enhances MSC viability. Concentration of Mg(2+) ions in extracts of MSCs increases with the increment of Mg content in the composites. Incorporation of Mg particles into PDLLA stimulates FN production, ALP activity, and VEGF secretion in MSCs, an effect mediated by degradation products dissolved from the composites. Degradation products of PDLLA induce an increase in MCP-1, RANTES, and MIP-1α secretion in macrophages while products of composites have minimal effect on these chemokines. Regulation of MSC behavior at the biomaterial's interface and macrophage-mediated inflammatory response to the degradation products is related to the incorporation of Mg in the composites. These findings suggest that including small amounts of Mg particles into polymeric devices can be a valuable strategy to promote osseointegration and reduce host inflammatory response.


Subject(s)
Biocompatible Materials/metabolism , Macrophages/cytology , Magnesium/metabolism , Mesenchymal Stem Cells/cytology , Polyesters/metabolism , Alkaline Phosphatase/metabolism , Biocompatible Materials/chemistry , Cell Line , Cell Survival , Cells, Cultured , Chemokine CCL2/metabolism , Chemokine CCL3/metabolism , Chemokine CCL5/metabolism , Humans , Macrophages/metabolism , Magnesium/chemistry , Mesenchymal Stem Cells/metabolism , Polyesters/chemistry , Vascular Endothelial Growth Factor A/metabolism
13.
Mater Sci Eng C Mater Biol Appl ; 33(3): 1789-94, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23827637

ABSTRACT

This research investigates in detail the bactericidal effect exhibited by the surface of the biomaterial Ti6Al4V after being subjected to UV-C light. It has been recently hypothesized that small surface currents, occurring as a consequence of the electron-hole pair recombination taking place after the excitation process, are behind the bactericidal properties displayed by this UV-treated material. To corroborate this hypothesis we have used different electrochemical techniques, such as electrochemical impedance spectroscopy (EIS), potentiodynamic polarization plots and Mott-Schottky plots. EIS and Mott-Schottky plots have shown that UV-C treatment causes an initial increase on the surface electrical conduction of this material. In addition, EIS and polarization plots demonstrated that higher corrosion currents occur at the UV treated than at the non-irradiated samples. Despite this increase in the corrosion currents, EIS has also shown that such currents are not likely to affect the good stability of this material oxide film since the irradiated samples completely recovered the control values after being stored in dark conditions for a period not longer than 24h. These results agree with the already-published in vitro transitory behavior of the bactericidal effect, which was shown to be present at initial times after the biomaterial implantation, a crucial moment to avoid a large number of biomaterial associated infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/radiation effects , Electrochemistry/methods , Titanium/pharmacology , Titanium/radiation effects , Ultraviolet Rays , Alloys , Bacteria/drug effects , Bacteria/radiation effects , Bacterial Adhesion/drug effects , Bacterial Adhesion/radiation effects , Dielectric Spectroscopy , Microbial Viability/drug effects , Microbial Viability/radiation effects , Surface Properties
14.
Langmuir ; 29(27): 8554-60, 2013 Jul 09.
Article in English | MEDLINE | ID: mdl-23772866

ABSTRACT

In this study, the structure and mechanical stability of human plasma fibronectin (HFN), a major protein component of blood plasma, have been evaluated in detail upon adsorption on the nonirradiated and irradiated Ti6Al4V material through the use of atomic force microscopy. The results indicated that the material surface changes occurring after the irradiation process reduce the disulfide bonds that typically preclude the mechanical denaturation of individual HFN domains and interfere significantly with the intraionic interactions stabilizing the compact conformation of the adsorbed HFN molecules. In particular, upon adsorption on this material, the molecules adopt a more flexible conformation and become mechanically more compliant. Unexpected observations also indicated that, regardless the material surface, a single HFN molecule can be pulled into an extended conformation without the unfolding of its domains through a series of three unraveling steps. The forces involved in the unraveling process were found to be generally lower than the forces required to unfold the individual protein domains. This report is the first one to present the force displacement details associated to the straightening of a single compact protein at the molecular level.


Subject(s)
Fibronectins/chemistry , Titanium/chemistry , Adsorption , Alloys , Fibronectins/blood , Humans , Microscopy, Atomic Force , Particle Size , Protein Unfolding , Surface Properties
15.
J Biomed Mater Res A ; 101(5): 1397-404, 2013 May.
Article in English | MEDLINE | ID: mdl-23076738

ABSTRACT

Biomaterial implant-associated infections, a common cause of medical devices' failure, are initiated by bacterial adhesion to an adsorbed protein layer on the implant material surface. In this study, the influence of protein surface orientation on bacterial adhesion has been examined using three clinically relevant bacterial strains known to express specific binding sites for human plasma fibronectin (HFN). HFN was allowed to adsorb on hydrophobic Ti6Al4V and physically modified hydrophilic Ti6Al4V substrata. Ellipsometric data reveal that the characteristics of the adsorbed protein layers primary depend on solid surface tension and the initial protein concentration in solution. In particular, HFN molecules adopt a more extended conformation on hydrophobic than hydrophilic surfaces, an effect that is more pronounced at low than at high initial protein concentrations. Moreover, the extended conformation of the protein molecules on these surfaces likely facilitates the exposure of specific sites for adhesion, resulting in the higher bacterial-cell attachment observed regardless of the strain considered. Contact angle measurements and the analysis of the number of remaining adhering cells after being subjected to external forces further suggest that both specific and nonspecific (hydrophobic) interactions play an important role on bacterial attachment. This study is the first one to evaluate the influence of surface hydrophobicity on protein adsorption and its subsequent effect on bacterial adhesion using a material whose hydrophobicity was not modified using chemical treatments that potentially led to surface properties changes other than hydrophobicity.


Subject(s)
Bacterial Adhesion , Biocompatible Materials/chemistry , Fibronectins/chemistry , Staphylococcus/isolation & purification , Titanium/chemistry , Adsorption , Alloys , Fibronectins/isolation & purification , Humans , Hydrophobic and Hydrophilic Interactions , Protein Conformation , Staphylococcal Infections/microbiology , Staphylococcus/physiology , Surface Properties
16.
Phys Chem Chem Phys ; 14(27): 9758-67, 2012 Jul 21.
Article in English | MEDLINE | ID: mdl-22684532

ABSTRACT

The electrical characterization of surfaces in terms of the zeta potential (ζ), i.e., the electric potential contributing to the interaction potential energy, is of major importance in a wide variety of industrial, environmental and biomedical applications in which the integration of any material with the surrounding media is initially mediated by the physico-chemical properties of its outer surface layer. Among the different existing electrokinetic techniques for obtaining ζ, streaming potential (V(str)) and streaming current (I(str)) are important when dealing with flat-extended samples. Mostly dielectric materials have been subjected to this type of analysis and only a few papers can be found in the literature regarding the electrokinetic characterization of conducting materials. Nevertheless, a standardized procedure is typically followed to calculate ζ from the measured data and, importantly, it is shown in this paper that such a procedure leads to incorrect zeta potential values when conductors are investigated. In any case, assessment of a reliable numerical value of ζ requires careful consideration of the origin of the input data and the characteristics of the experimental setup. In particular, it is shown that the cell resistance (R) typically obtained through a.c. signals (R(a.c.)), and needed for the calculations of ζ, always underestimates the zeta potential values obtained from streaming potential measurements. The consideration of R(EK), derived from the V(str)/I(str) ratio, leads to reliable values of ζ when dielectrics are investigated. For metals, the contribution of conductivity of the sample to the cell resistance provokes an underestimation of R(EK), which leads to unrealistic values of ζ. For the electrical characterization of conducting samples I(str) measurements constitute a better choice. In general, the findings gathered in this manuscript establish a measurement protocol for obtaining reliable zeta potentials of dielectrics and conductors based on the intrinsic electrokinetic behavior of both types of samples.


Subject(s)
Electric Conductivity , Algorithms , Glass/chemistry , Gold/chemistry , Kinetics , Polymethyl Methacrylate/chemistry , Titanium/chemistry
17.
Colloids Surf B Biointerfaces ; 88(1): 373-80, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21807482

ABSTRACT

One of the principal techniques for evaluating the surface hydrophobicity of biological samples is contact angle. This method, applied readily to flat-smooth-inert surfaces, gives rise to an important debate when implemented with microbial lawns. After its initial description, in 1984, several authors have carried out modifications of the technique but the results obtained have not been previously judged. This work focuses on the particularities of contact angle measurements on bacterial lawns and enhances the idea of the impossibility of using water contact angle as a universal measurement of bacterial hydrophobicity. Contact angles can only be used as relative indicators of hydrophobicity, in a similar way to tests based on microbial adhesion to solvents. The strong dependence of contact angles on dried bacterial lawns with measuring time and environmental conditions (e.g. pH of the media) preclude the estimation of their absolute values, and so, of the cells surface Gibbs energy. Yet, for a given measuring time, it is found that the hydrophobicity and the apparent bacterial surface Gibbs energy components are qualitatively related to the bacterial surface electrical potential. In particular, a hydrophobic increase is always accompanied by an increase of the cells Lifshitz-Van der Waals component and a decrease of their acid-base component and absolute zeta potential. Therefore, the present study shows that the physico-chemical surface properties that characterize bacteria are not independent, and one of them can be qualitatively described in terms of the others when measuring contact angles at a fixed time after the drying of the microbial beds.


Subject(s)
Bacteria , Bacterial Adhesion , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Surface Properties
18.
Mol Nutr Food Res ; 54(12): 1744-52, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20568234

ABSTRACT

SCOPE: Atomic force microscopy (AFM) was used to directly measure the nanoscale adhesion forces between P-fimbriated Escherichia coli (E. coli) and human uroepithelial cells exposed to cranberry juice, in order to reveal the molecular mechanisms by which cranberry juice cocktail (CJC) affects bacterial adhesion. METHODS AND RESULTS: Bacterial cell probes were created by attaching P-fimbriated E. coli HB101pDC1 or non-fimbriated E. coli HB101 to AFM tips, and the cellular probes were used to directly measure the adhesion forces between E. coli and uroepithelial cells in solutions containing: 0, 2.5, 5, 10, and 27 wt% CJC. Macroscale attachment of E. coli to uroepithelial cells was measured and correlated to nanoscale adhesion force measurements. The adhesion forces between E. coli HB101pDC1 and uroepithelial cells were dose-dependent, and decreased from 9.32±2.37 nN in the absence of CJC to 0.75±0.19 nN in 27 wt% CJC. Adhesion forces between E. coli HB101 and uroepithelial cells were low in buffer (0.74±0.18 nN), and did not change significantly in CJC (0.78±0.18 nN in 27 wt% CJC; P=0.794). CONCLUSION: Our study shows that CJC significantly decreases nanoscale adhesion forces between P-fimbriated E. coli and uroepithelial cells.


Subject(s)
Bacterial Adhesion , Beverages , Epithelial Cells/microbiology , Escherichia coli/physiology , Vaccinium macrocarpon/chemistry , Fimbriae, Bacterial/physiology , Humans , Microscopy, Atomic Force/methods , Urothelium/cytology , Urothelium/microbiology
19.
Biomaterials ; 31(19): 5159-68, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20362330

ABSTRACT

TiO(2)-coated biomaterials that have been excited with UV irradiation have demonstrated biocidal properties in environmental applications, including drinking water decontamination. However, this procedure has not been successfully applied towards the killing of pathogens on medical titanium-based implants, mainly because of practical concerns related to irradiating the inserted biomaterial in situ. Previous researchers assumed that the photocatalysis on the TiO(2) surface during UV application causes the bactericidal effects. However, we show that a residual post-irradiation bactericidal effect exists on the surface of Ti6Al4V, not related with photocatalysis. Using a combination of staining, serial dilutions, and a biofilm assay, we show a significant and time-dependent loss in viability of different bacterial strains of Staphylococcus epidermidis and Staphylococcus aureus on the post-irradiated surface. Although the duration of this antimicrobial effect depends on the strains selected, our experiments suggest that the effect lasts at least 60 min after surface irradiation. The origin of such phenomena is discussed in terms of the physical properties of the irradiated surfaces, which include the emission of energy and changes in surfaces charge occurring during electron-hole recombination processes. The method here proposed for the preparation of antimicrobial titanium surfaces could become especially useful in total implant surgery for which the antimicrobial challenge is mainly during or shortly after surgery.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Biocompatible Materials/administration & dosage , Biocompatible Materials/chemistry , Staphylococcus/cytology , Staphylococcus/drug effects , Titanium/administration & dosage , Titanium/chemistry , Alloys , Anti-Bacterial Agents/radiation effects , Biocompatible Materials/radiation effects , Cell Survival/drug effects , Materials Testing , Surface Properties , Titanium/radiation effects , Ultraviolet Rays
20.
Acta Biomater ; 5(1): 181-92, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18768375

ABSTRACT

UV irradiation leads to a "spontaneous" wettability increase of the Ti6Al4V surface while preserving bulk properties of the alloy that are crucial for its performance as an orthopedic and dental implant. We hypothesized that UV treatment of Ti6Al4V may impair bacterial adhesion without compromising the good response of human bone-forming cells to this alloy. The in vitro biocompatibility of the Ti6Al4V surface, before and after UV irradiation, was analyzed by using human cells related to the osteoblastic phenotype. The adhesion processes of bacterial strains related to clinical orthopedic infections, i.e., Staphylococcus aureus and Staphylococcus epidermidis, were studied theoretically and in vitro, under dynamic and static conditions as well as in the presence or absence of shear forces. While human cell adhesion was not altered by UV irradiation of Ti6Al4V alloy, this treatment reduced not only initial bacterial adhesion rates but also the number of bacteria retained on the surface after the passage of two air-liquid interfaces on the previously adhered bacteria. This study proposes the use of UV treatment prior to implantation protocols as an easy, economic and effective way of reducing bacterial adhesion on the Ti6Al4V surface without compromising its excellent biocompatibility.


Subject(s)
Bacterial Adhesion , Biocompatible Materials/chemistry , Chemistry, Physical/methods , Osteoblasts/metabolism , Titanium/chemistry , Alloys , Bone and Bones/metabolism , Cell Line, Tumor , Humans , Models, Biological , Models, Statistical , Phenotype , Staphylococcus aureus/metabolism , Staphylococcus epidermidis/metabolism , Thermodynamics , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...