Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Brain Sci ; 14(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38539624

ABSTRACT

Adventure Therapy (AT) is a therapeutic intervention utilizing the natural environment and adventure activities as tools for psychotherapeutic interventions. It has been demonstrated to be appropriate for the intervention of patients with borderline personality disorder (BPD). This study aims to evaluate the response to AT treatment compared with the response to treatment as usual (TAU), based on cognitive behavioural therapy, in the short and long term, assessing clinical, psychosocial, and functional outcomes; quality of life; and physical health levels. This study extends the sample of and is a follow-up to a pilot study published in 2021, with a sample of 30 patients in the AT group and 10 in the control group. It does not allow us to affirm that AT provides better outcomes than TAU, as the positive effects observed immediately after therapy seem to be attenuated in the long term. Therefore, the effectiveness of long-term psychotherapy did not show differences between AT and TAU therapies in the treatment of BPD patients. However, the effects of intangibles observed during therapy by professionals and patients were not reflected in the measurements collected. Therefore, we believe it is necessary to increase the programme duration, complement treatment with a specific physical health programme, assess results with more specific instruments, and/or move towards a qualitative methodology to measure perceived changes in clinical improvement. New studies are needed to evaluate the results of the proposed changes.

2.
Biomedicines ; 12(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38255234

ABSTRACT

Extracellular vesicles (EVs) are tiny membranous structures that mediate intercellular communication. The role(s) of these vesicles have been widely investigated in the context of neurological diseases; however, their potential implications in the neuropathology subjacent to human psychiatric disorders remain mostly unknown. Here, by using next-generation discovery-driven proteomics, we investigate the potential role(s) of brain EVs (bEVs) in schizophrenia (SZ) by analyzing these vesicles from the three post-mortem anatomical brain regions: the prefrontal cortex (PFC), hippocampus (HC), and caudate (CAU). The results obtained indicate that bEVs from SZ-affected brains contain region-specific proteins that are associated with abnormal GABAergic and glutamatergic transmission. Similarly, these vesicles from the analyzed regions were implicated in synaptic decay, abnormal brain immunity, neuron structural imbalances, and impaired cell homeostasis. Our findings also provide evidence, for the first time, that networks of molecular exchange (involving the PFC, HC, and CAU) are potentially active and mediated by EVs in non-diseased brains. Additionally, these bEV-mediated networks seem to have become partially reversed and largely disrupted in the brains of subjects affected by SZ. Taken as a whole, these results open the door to the uncovering of new biological markers and therapeutic targets, based on the compositions of bEVs, for the benefit of patients affected by SZ and related psychotic disorders.

3.
Aging Cell ; 23(3): e14062, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38111315

ABSTRACT

Aging is the primary risk factor for the development of numerous human chronic diseases. On a molecular level, it significantly impacts the regulation of protein modifications, leading to the accumulation of degenerative protein modifications (DPMs) such as aberrant serine phosphorylation (p-Ser) and trioxidized cysteine (t-Cys) within the proteome. The altered p-Ser is linked to abnormal cell signaling, while the accumulation of t-Cys is associated with chronic diseases induced by oxidative stress. Despite this, the potential cross-effects and functional interplay between these two critical molecular factors of aging remain undisclosed. This study analyzes the aging proteome of wild-type C57BL/6NTac mice over 2 years using advanced proteomics and bioinformatics. Our objective is to provide a comprehensive analysis of how t-Cys affects cell signaling and protein structure in the aging process. The results obtained indicate that t-Cys residues accumulate in the aging proteome, interact with p-Ser interacting enzymes, as validated in vitro, and alter their structures similarly to p-Ser. These findings have significant implications for understanding the interplay of oxidative stress and phosphorylation in the aging process. Additionally, they open new venues for further research on the role(s) of these protein modifications in various human chronic diseases and aging, wherein exacerbated oxidation and aberrant phosphorylation are implicated.


Subject(s)
Cysteine , Proteome , Mice , Humans , Animals , Cysteine/analysis , Cysteine/chemistry , Cysteine/metabolism , Proteome/metabolism , Mice, Inbred C57BL , Aging/metabolism , Protein Processing, Post-Translational , Oxidation-Reduction , Chronic Disease
4.
STAR Protoc ; 4(3): 102524, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37624701

ABSTRACT

Vascular dysfunction underlies the onset and progression of many life-threatening diseases, highlighting the need for improved understanding of its molecular basis. Here, we present differential systemic decellularization in vivo (DISDIVO), a protocol that enables systemic and independent study of the molecular changes in each vasculature layer in murine models of disease. We describe steps for anesthesia, perfusion surgery, and exsanguination. We then detail detachment and collection of glycocalyx and decellularization and collection of both endothelial and smooth muscle cells. For complete details on the use and execution of this protocol, please refer to Serra et al., Gallart-Palau et al., and Vinaiphat et al.1,2,3.


Subject(s)
Myocytes, Smooth Muscle , Animals , Mice , Disease Models, Animal , Perfusion
5.
J Proteome Res ; 22(7): 2271-2280, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37354121

ABSTRACT

Minimally invasive prognostic markers of inflammation and dyslipidemia in individuals with a risk of psychosis, also called "at-risk mental state" (ARMS), or in the first episode of psychosis (FEP) are of utmost clinical importance to prevent cardiovascular disorders. We analyzed the plasma concentration of inflammation-linked glycoproteins (Glycs) and lipoprotein subclasses by proton nuclear magnetic resonance (1H NMR) in a single acquisition. Study participants were healthy controls (HCs, N = 67) and patients with ARMS (N = 58), FEP (N = 110), or early psychosis diagnosis with ≥2 episodes (critical period (CP), N = 53). Clinical biomarkers such as high-sensitivity C-reactive protein, interleukin 6, fibrinogen, insulin, and lipoproteins were also measured. Although all participants had normal lipoprotein profiles and no inflammation according to conventional biomarkers, a gradual increase in the Glyc 1H NMR levels was observed from HCs to CP patients; this increase was statistically significant for GlycA (CP vs HC). In parallel, a progressive and significant proatherogenic 1H NMR lipoprotein profile was also identified across stages of psychosis (ARMS and CP vs HC). These findings highlight the potential of using 1H NMR Glyc and lipoprotein profiling to identify blood changes in individuals with ARMS or FEP and pave the way for applications using this technology to monitor metabolic and cardiovascular risks in clinical psychiatry.


Subject(s)
Inflammation , Psychotic Disorders , Humans , Proton Magnetic Resonance Spectroscopy , Inflammation/metabolism , Lipoproteins , Psychotic Disorders/diagnosis , Magnetic Resonance Spectroscopy , Biomarkers , Glycoproteins
6.
Acta Neuropathol Commun ; 11(1): 76, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37158955

ABSTRACT

Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by NOTCH3 mutations. Typical CADASIL is characterised by subcortical ischemic strokes due to severe arteriopathy and fibrotic thickening of small arteries. Arteriolar vascular smooth muscle cells (VSMCs) are the key target in CADASIL, but the potential mechanisms involved in their degeneration are still unclear. Focusing on cerebral microvessels in the frontal and anterior temporal lobes and the basal ganglia, we used advanced proteomic and immunohistochemical methods to explore the extent of inflammatory and immune responses in CADASIL subjects compared to similar age normal and other disease controls. There was variable loss of VSMC in medial layers of arteries in white matter as well as the cortex, that could not be distinguished whether NOTCH3 mutations were in the epidermal growth factor (EGFr) domains 1-6 or EGFr7-34. Proteomics of isolated cerebral microvessels showed alterations in several proteins, many associated with endoplasmic reticulum (ER) stress including heat shock proteins. Cerebral vessels with sparsely populated VSMCs also attracted robust accrual of perivascular microglia/macrophages in order CD45+ > CD163+ > CD68+cells, with > 60% of vessel walls exhibiting intercellular adhesion molecule-1 (ICAM-1) immunoreactivity. Functional VSMC cultures bearing the NOTCH3 Arg133Cys mutation showed increased gene expression of the pro-inflammatory cytokine interleukin 6 and ICAM-1 by 16- and 50-fold, respectively. We further found evidence for activation of the alternative pathway of complement. Immunolocalisation of complement Factor B, C3d and C5-9 terminal complex but not C1q was apparent in ~ 70% of cerebral vessels. Increased complement expression was corroborated in > 70% of cultured VSMCs bearing the Arg133Cys mutation independent of N3ECD immunoreactivity. Our observations suggest that ER stress and other cellular features associated with arteriolar VSMC damage instigate robust localized inflammatory and immune responses in CADASIL. Our study has important implications for immunomodulation approaches to counter the characteristic arteriopathy of CADASIL.


Subject(s)
CADASIL , Humans , CADASIL/genetics , Intercellular Adhesion Molecule-1 , Proteomics , Complement System Proteins , Cerebral Infarction
7.
Front Endocrinol (Lausanne) ; 14: 1113824, 2023.
Article in English | MEDLINE | ID: mdl-37033249

ABSTRACT

Introduction: Extracellular vesicles (EVs) have been recognized as key players in numerous physiological functions. These vesicles alter their compositions attuned to the health and disease states of the organism. In men, significant changes in the proteomic composition(s) of seminal plasma EVs (sEVs) have already been found to be related to infertility. Methods: Methods: In this study, we analyze the posttranslational configuration of sEV proteomes from normozoospermic (NZ) men and non-normozoospermic (non-NZ) men diagnosed with teratozoospermia and/or asthenozoospermia by unbiased, discovery-driven proteomics and advanced bioinformatics, specifically focusing on citrulline (Cit) and homocitrulline (hCit) posttranscriptional residues, both considered product of ureido protein modifications. Results and discussion: Significant increase in the proteome-wide cumulative presence of hCit together with downregulation of Cit in specific proteins related to decisive molecular functions have been encountered in sEVs of non-NZ subjects. These findings identify novel culprits with a higher chance of affecting fundamental aspects of sperm functional quality and define potential specific diagnostic and prognostic non-invasive markers for male infertility.


Subject(s)
Extracellular Vesicles , Infertility, Male , Humans , Male , Semen/metabolism , Proteomics/methods , Spermatozoa/metabolism , Infertility, Male/diagnosis , Infertility, Male/metabolism
8.
Crit Rev Food Sci Nutr ; 63(22): 5521-5545, 2023.
Article in English | MEDLINE | ID: mdl-34978226

ABSTRACT

Substances with modulatory capabilities on certain aspects of human cognition have been revered as nootropics from the dawn of time. The plant kingdom provides most of the currently available nootropics of natural origin. Here, in this systematic review, we aim to provide state-of-the-art information regarding proven and unproven effects of plant-derived nootropics (PDNs) on human cognition in conditions of health and disease. Six independent searches, one for each neurocognitive domain (NCD), were performed in parallel using three independent scientific library databases: PubMed, Cochrane and Scopus. Only scientific studies and systematic reviews with humans published between January 2000 and November 2021 were reviewed, and 256 papers were included. Ginkgo biloba was the most relevant nootropic regarding perceptual and motor functions. Bacopa monnieri improves language, learning and memory. Withania somnifera (Ashwagandha) modulates anxiety and social-related cognitions. Caffeine enhances attention and executive functions. Together, the results from the compiled studies highlight the nootropic effects and the inconsistencies regarding PDNs that require further research.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2021.2021137.


Subject(s)
Nootropic Agents , Humans , Nootropic Agents/pharmacology , Plant Extracts/pharmacology , Cognition , Phytotherapy
9.
Front Psychiatry ; 14: 1325145, 2023.
Article in English | MEDLINE | ID: mdl-38264640

ABSTRACT

The behavioural variant of Frontotemporal Dementia (bvFTD) is a neurodegenerative condition characterized by behavioural and cognitive symptoms. Mood disturbances, including manic-like episodes, can occur in bvFTD, posing diagnostic and therapeutic challenges. This case report presents a 62-year-old male with bvFTD exhibiting weekly mood fluctuations alternating between manic and depressive-like states. While initial treatment with quetiapine and trazodone showed partial improvement, the periodicity of mood fluctuations persisted. Subsequently, lithium was introduced, resulting in a notable reduction in symptom severity for both manic and depressive episodes. This report highlights the potential use of lithium as a mood stabilizer in bvFTD patients with periodic mood fluctuations, refractory to standard treatments. Further research is needed to elucidate the mechanisms underlying lithium's efficacy in bvFTD and to establish treatment guidelines.

10.
Biomedicines ; 10(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36009350

ABSTRACT

Imbalances of the oral microbiota and dysbiosis have traditionally been linked to the occurrence of teeth and oral diseases. However, recent findings indicate that this microbiota exerts relevant influence in systemic health. Dysbiosis of the oral microbiota is implicated in the apparition and progression of cardiovascular, neurodegenerative and other major human diseases. In fact, the oral microbiota are the second most diverse and largely populated microbiota of the human body and its relationships with systemic health, although widely explored, they still lack of proper integration. The purpose of this systematic review is thus to widely examine the implications of oral microbiota in oral, cardiovascular and neurodegenerative diseases to offer integrative and up-to-date interpretations. To achieve that aim, we identified a total of 121 studies curated in PUBMED from the time interval January 2003-April 2022, which after careful screening resulted in 79 studies included. The reviewed scientific literature provides plausible vias of implication of dysbiotic oral microbiota in systemic human diseases, and encourages further research to continue elucidating the highly relevant and still poorly understood implications of this niche microbiota in systemic health. PROSPERO Registration Number: CRD42022299692. This systematic review follows relevant PRISMA guidelines.

11.
Biosci Rep ; 42(5)2022 05 27.
Article in English | MEDLINE | ID: mdl-35502767

ABSTRACT

Brown adipose tissue (BAT) is a promising weapon to combat obesity and metabolic disease. BAT is thermogenic and consumes substantial amounts of glucose and fatty acids as fuel for thermogenesis and energy expenditure. To study BAT function in large human longitudinal cohorts, safe and precise detection methodologies are needed. Although regarded a gold standard, the foray of PET-CT into BAT research and clinical applications is limited by its high ionizing radiation doses. Here, we show that brown adipocytes release exosomes in blood plasma that can be utilized to assess BAT activity. In the present study, we investigated circulating protein biomarkers that can accurately and reliably reflect BAT activation triggered by cold exposure, capsinoids ingestion and thyroid hormone excess in humans. We discovered an exosomal protein, methylene tetrahydrofolate dehydrogenase (NADP+ dependent) 1-like (MTHFD1L), to be overexpressed and detectable in plasma for all three modes of BAT activation in human subjects. This mitochondrial protein is packaged as a cargo within multivesicular bodies of the endosomal compartment and secreted as exosomes via exocytosis from activated brown adipocytes into the circulation. To support MTHFD1L as a conserved BAT activation response in other vertebrates, we examined a rodent model and also proved its presence in blood of rats following BAT activation by cold exposure. Plasma concentration of exosomal MTHFD1L correlated with human BAT activity as confirmed by PET-MR in humans and supported by data from rats. Thus, we deduce that MTHFD1L appears to be overexpressed in activated BAT compared to BAT in the basal nonstimulated state.


Subject(s)
Adipose Tissue, Brown , Exosomes , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Animals , Energy Metabolism , Exosomes/metabolism , Humans , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , NADP/metabolism , Positron Emission Tomography Computed Tomography , Rats , Tetrahydrofolate Dehydrogenase/metabolism
14.
BMC Biol ; 18(1): 175, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33234129

ABSTRACT

BACKGROUND: Inflammation affecting whole organism vascular networks plays a central role in the progression and establishment of several human diseases, including Gram-negative sepsis. Although the molecular mechanisms that control inflammation of specific vascular beds have been partially defined, knowledge lacks on the impact of these on the molecular dynamics of whole organism vascular beds. In this study, we have generated an in vivo model by coupling administration of lipopolysaccharide with stable isotope labeling in mammals to mimic vascular beds inflammation in Gram-negative sepsis and to evaluate its effects on the proteome molecular dynamics. Proteome molecular dynamics of individual vascular layers (glycocalyx (GC), endothelial cells (EC), and smooth muscle cells (SMC)) were then evaluated by coupling differential systemic decellularization in vivo with unbiased systems biology proteomics. RESULTS: Our data confirmed the presence of sepsis-induced disruption of the glycocalyx, and we show for the first time the downregulation of essential molecular maintenance processes in endothelial cells affecting this apical vascular coating. Similarly, a novel catabolic phenotype was identified in the newly synthesized EC proteomes that involved the impairment of protein synthesis, which affected multiple cellular mechanisms, including oxidative stress, the immune system, and exacerbated EC-specific protein turnover. In addition, several endogenous molecular protective mechanisms involving the synthesis of novel antithrombotic and anti-inflammatory proteins were also identified as active in EC. The molecular dynamics of smooth muscle cells in whole organism vascular beds revealed similar patterns of impairment as those identified in EC, although this was observed to a lesser extent. Furthermore, the dynamics of protein posttranslational modifications showed disease-specific phosphorylation sites in the EC proteomes. CONCLUSIONS: Together, the novel findings reported here provide a broader picture of the molecular dynamics that take place in whole organism vascular beds in Gram-negative sepsis inflammation. Similarly, the obtained data can pave the way for future therapeutic strategies aimed at intervening in specific protein synthesis mechanisms of the vascular unit during acute inflammatory processes.


Subject(s)
Molecular Dynamics Simulation , Proteome/drug effects , Sepsis/physiopathology , Animals , Escherichia coli/chemistry , Lipopolysaccharides/administration & dosage , Male , Mice , Mice, Inbred C57BL , Proteomics
15.
Alzheimers Res Ther ; 12(1): 54, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32384937

ABSTRACT

BACKGROUND: The contributions of brain intercellular communication mechanisms, specifically extracellular vesicles (EV), to the progression of Alzheimer's disease (AD) remain poorly understood. METHODS: Here, we investigated the role(s) of brain EV in the progressive course of AD through unbiased proteome-wide analyses of temporal lobe-derived EV and proteome-label quantitation of complementary remaining brain portions. Furthermore, relevant proteins identified were further screened by multiple reaction monitoring. RESULTS: Our data indicate that EV biogenesis was altered during preclinical AD with the genesis of a specific population of EV containing MHC class-type markers. The significant presence of the prion protein PrP was also manifested in these brain vesicles during preclinical AD. Similarly, sequestration of amyloid protein APP in brain EV coincided with the observed PrP patterns. In contrast, active incorporation of the mitophagy protein GABARAP in these brain vesicles was disrupted as AD progressed. Likewise, disrupted incorporation of LAMP1 in brain EV was evident from the initial manifestation of AD clinical symptoms, although the levels of the protein remained significantly upregulated in the temporal lobe of diseased brains. CONCLUSIONS: Our findings indicate that impaired autophagy in preclinical AD coincides with the appearance of proinflammatory and neuropathological features in brain extracellular vesicles, facts that moderately remain throughout the entire AD progression. Thus, these data highlight the significance of brain EV in the establishment of AD neuropathology and represent a further leap toward therapeutic interventions with these vesicles in human dementias.


Subject(s)
Alzheimer Disease , Extracellular Vesicles , Prions , Alzheimer Disease/genetics , Brain/metabolism , Disease Progression , Extracellular Vesicles/metabolism , Humans , Prions/metabolism
16.
J Proteome Res ; 19(4): 1706-1717, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32175745

ABSTRACT

Aging can have profound effects on the mammalian brain leading to neurodegeneration and cognitive impairment. The brain has exceptionally high-energy requirements and is particularly susceptible to damage within its bioenergetic pathways. Here, we asked how the bioenergetic proteome of the murine brain changed with age and how this might affect brain function. Using label-free LC-MS/MS proteomics for the discovery phase and quantitative multiple reaction monitoring LC-MRM-MS/MS for the validation phase, we found dysregulated expression of multiple components of the tricarboxylic acid cycle, which is key for mitochondrial energy production, including SULA2, IDH1, IDH2, SDHB, PDHB, MDH1, FH1, and NDUFS3, in old murine brains. We also saw that the oxidoreductases, thioredoxin and glutaredoxin, were significantly down-regulated in the old mouse brain and showed through MS that this correlated with the accumulation of trioxidation in the key metabolic enzyme MDH1 at Cys137. 3D modeling of MDH1 predicted that the damaged sites were located at the protein active zone, and enzymatic kinetic analysis confirmed that MDH1 function was significantly reduced in the old mouse brain. These findings identify the tricarboxylic acid cycle as a key target of degenerative protein modifications with deleterious effects on the aging brain's bioenergetic function.


Subject(s)
Brain , Tandem Mass Spectrometry , Animals , Chromatography, Liquid , Energy Metabolism , Kinetics , Mice , Oxidative Stress
17.
Food Res Int ; 125: 108569, 2019 11.
Article in English | MEDLINE | ID: mdl-31554040

ABSTRACT

Snacking has traditionally been associated with consumption of foods rich in fats and carbohydrates. However, new dietary trends switched to consumption of protein-rich foods. This study investigates the impact of food processing on the cryptome of one of the most widely consumed meat snacks, beef jerky. We have performed discovery-driven proteome-wide analyses, which identified a significantly elevated presence of reactive prooxidant post-translational modifications in jerky. We also found that these protein decorations impact an important subset of in-silico predicted DNA binding cryptides. Furthermore, we observed cell-dependent reduction in cell viability after prolonged treatments with endogenous-like jerky digests. Collectively these findings uncover the presence of prooxidant modifications in processed dried beef snacks and associate their presence with cytotoxicity. Thus, the findings reported here can pave the way for future studies aimed to establish appropriate dietary recommendations on snacking trends.


Subject(s)
Digestion , Food Handling/methods , Meat Products/analysis , Proteome/chemistry , Proteome/metabolism , Snacks , Cell Survival , Proteome/analysis
18.
Ageing Res Rev ; 53: 100909, 2019 08.
Article in English | MEDLINE | ID: mdl-31116994

ABSTRACT

Aging influences the pathogenesis and progression of several major diseases affecting both the cardiovascular system (CVS) and central nervous system (CNS). Defining the common molecular features that underpin these disorders in these crucial body systems will likely lead to increased quality of life and improved 'health-span' in the global aging population. Degenerative protein modifications (DPMs) have been strongly implicated in the molecular pathogenesis of several age-related diseases affecting the CVS and CNS, including atherosclerosis, heart disease, dementia syndromes, and stroke. However, these isolated findings have yet to be integrated into a wider framework, which considers the possibility that, despite their distinct features, CVS and CNS disorders may in fact be closely related phenomena. In this work, we review the current literature describing molecular roles of the major age-associated DPMs thought to significantly impact on human health, including carbamylation, citrullination and deamidation. In particular, we focus on data indicating that specific DPMs are shared between multiple age-related diseases in both CVS and CNS settings. By contextualizing these data, we aim to assist future studies in defining the universal mechanisms that underpin both vascular and neurological manifestations of age-related protein degeneration.


Subject(s)
Aging , Cardiovascular System/metabolism , Central Nervous System/metabolism , Protein Processing, Post-Translational , Proteins/chemistry , Animals , Cardiovascular System/physiopathology , Central Nervous System/physiopathology , Citrullination , Dementia , Humans , Neurodegenerative Diseases , Protein Carbamylation , Proteins/metabolism
19.
Oncotarget ; 10(22): 2136-2150, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-31040906

ABSTRACT

Hypoxia is an environmental cue that is associated with multiple tumorigenic processes such as immunosuppression, angiogenesis, cancer invasion, metastasis, drug resistance, and poor clinical outcomes. When facing hypoxic stress, cells initiate several adaptive responses such as cell cycle arrest to reduce excessive oxygen consumption and co-activation of oncogenic factors. In order to identify the critical novel proteins for hypoxia responses, we used pulsed-SILAC method to trace the active cellular translation events in A431 cells. Proteomic discovery data and biochemical assays showed that cancer cells selectively activate key glycolytic enzymes and novel ER-stress markers, while protein synthesis is severely suppressed. Interestingly, deprivation of oxygen affected the expression of various epigenetic regulators such as histone demethylases and NuRD (nucleosome remodeling and deacetylase) complex in A431 cells. In addition, we identified PHF14 (the plant homeodomain finger-14) as a novel hypoxia-sensitive epigenetic regulator that plays a key role in cell cycle progress and protein synthesis. Hypoxia-mediated inhibition of PHF14 was associated with increase of key cell cycle inhibitors, p14ARF, p15INK4b, and p16INK4a, which are responsible for G1-S phase transition and decrease of AKT-mTOR-4E-BP1/pS6K signaling pathway, a master regulator of protein synthesis, in response to environmental cues. Analysis of TCGA colon cancer (n=461) and skin cancer (n=470) datasets revealed a positive correlation between PHF14 expression and protein translation initiation factors, eIF4E, eIF4B, and RPS6. Significance of PHF14 gene was further demonstrated by in vivo mouse xenograft model using PHF14 KD cell lines.

20.
Brain Pathol ; 29(5): 593-605, 2019 09.
Article in English | MEDLINE | ID: mdl-30629763

ABSTRACT

Vascular factors that reduce blood flow to the brain are involved in apparition and progression of dementia. We hypothesized that cerebral hypoperfusion (CH) might alter the molecular compositions of brain intercellular communication mechanisms while affecting the neurovascular unit in preclinical and clinical human dementias. To test that hypothesis, mice were subjected to bilateral common carotid stenosis (BCAS) and the molecular compositions of brain-derived and circulating extracellular vesicles (EVs) were assessed. Murine brain vesicle profiles were then analyzed in parallel with brain EVs from post-mortem subjects affected by preclinical Alzheimer's Disease (AD) and mixed dementias. Brain EVs were identified with molecular mediators of hypoxia responses, neuroprotection and neurotoxicity in BCAS mice, patterns also partially resembled by subjects with preclinical AD and mixed dementias. Together these findings indicate that brain EVs represent a promising source of therapeutic targets and circulating markers of neurovascular insult in idiopathic dementias. Furthermore, the results obtained generate novel and compelling hypotheses about the molecular involvement of the vascular component in the etiology of human dementias.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Extracellular Vesicles/metabolism , Amyloid beta-Peptides/metabolism , Animals , Blood-Brain Barrier/physiopathology , Brain/metabolism , Carotid Stenosis , Cerebrovascular Circulation/physiology , Disease Models, Animal , Disease Progression , Extracellular Vesicles/physiology , Female , Humans , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...