Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2204393, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36453591

ABSTRACT

The photoluminescence (PL) of metal halide perovskites can recover after light or current-induced degradation. This self-healing ability is tested by acting mechanically on MAPbI3 polycrystalline microcrystals by an atomic force microscope tip (applying force, scratching, and cutting) while monitoring the PL. Although strain and crystal damage induce strong PL quenching, the initial balance between radiative and nonradiative processes in the microcrystals is restored within a few minutes. The stepwise quenching-recovery cycles induced by the mechanical action is interpreted as a modulation of the PL blinking behavior. This study proposes that the dynamic equilibrium between active and inactive states of the metastable nonradiative recombination centers causing blinking is perturbed by strain. Reversible stochastic transformation of several nonradiative centers per microcrystal under application/release of the local stress can lead to the observed PL quenching and recovery. Fitting the experimental PL trajectories by a phenomenological model based on viscoelasticity provides a characteristic time of strain relaxation in MAPbI3 on the order of 10-100 s. The key role of metastable defect states in nonradiative losses and in the self-healing properties of perovskites is suggested.

SELECTION OF CITATIONS
SEARCH DETAIL
...