Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 120(41): 8011-8023, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27657880

ABSTRACT

The unusually high heats of vaporization of room-temperature ionic liquids (RTILs) complicate the utilization of thermal evaporation to study ionic liquid reactivity. Although effusion of RTILs into a reaction flow-tube or mass spectrometer is possible, competition between vaporization and thermal decomposition of the RTIL can greatly increase the complexity of the observed reaction products. In order to investigate the reaction kinetics of a hypergolic RTIL, 1-butyl-3-methylimidazolium dicyanamide (BMIM+DCA-) was aerosolized and reacted with gaseous nitric acid, and the products were monitored via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry at the Chemical Dynamics Beamline 9.0.2 at the Advanced Light Source. Reaction product formation at m/z 42, 43, 44, 67, 85, 126, and higher masses was observed as a function of HNO3 exposure. The identities of the product species were assigned to the masses on the basis of their ionization energies. The observed exposure profile of the m/z 67 signal suggests that the excess gaseous HNO3 initiates rapid reactions near the surface of the RTIL aerosol. Nonreactive molecular dynamics simulations support this observation, suggesting that diffusion within the particle may be a limiting step. The mechanism is consistent with previous reports that nitric acid forms protonated dicyanamide species in the first step of the reaction.

2.
J Phys Chem A ; 112(34): 7816-24, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18681416

ABSTRACT

A class of room-temperature ionic liquids (RTILs) that exhibit hypergolic activity toward fuming nitric acid is reported. Fast ignition of dicyanamide ionic liquids when mixed with nitric acid is contrasted with the reactivity of the ionic liquid azides, which show high reactivity with nitric acid, but do not ignite. The reactivity of other potential salt fuels is assessed here. Rapid-scan, Fourier transform infrared (FTIR) spectroscopy of the preignition phase indicates the evolution of N 2O from both the dicyanamide and azide RTILs. Evidence for the evolution of CO 2 and isocyanic acid (HNCO) with similar temporal behavior to N 2O from reaction of the dicyanamide ionic liquids with nitric acid is presented. Evolution of HN 3 is detected from the azides. No evolution of HCN from the dicyanamide reactions was detected. From the FTIR observations, biuret reaction tests, and initial ab initio calculations, a mechanism is proposed for the formation of N 2O, CO 2, and HNCO from the dicyanamide reactions during preignition.

SELECTION OF CITATIONS
SEARCH DETAIL
...