Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0298776, 2024.
Article in English | MEDLINE | ID: mdl-38805499

ABSTRACT

The output signals in natural dyes-based solar cells (DSSC) can be either rising or decaying depending on the type of ions present in the system; these ions called added ions, are introduced by the additives: mordant and brighteners. The photon-dye interaction produces electrons, which eventually reach the electrode giving place to a superficially charged electrode in contact with an electrolyte where are the added ions. This combination produces, automatically, an electrical double-layer EDL structure which has important effects on the performance of the system: a) the added ions control, to a large extent, the initial shape of the output signal, giving rise to rising or decaying profiles; b) it is possible to store large amounts of energy and charge at high electric fields. This structure is found in many other systems that have a surface charged in contact with an electrolyte like piezoelectric materials in human body. This assertion was supported by determining important parameters such as the force between charged surfaces on both sides of the interface, the charge density, the energy density, and the capacitance. The Debye length has very small values then, many important quantities depend on this; it is possible to obtain large values for energy UDL ~ 3.6x105 Jm-3 and charge density ρDL ≈ 1.1x107 Cm-3 for double layer capacitors; these values are orders of magnitude larger than the corresponding values for electrostatic capacitors: Uelec ≈ 4.5x10-3 Jm-3 and ρelec ≈ 1.2 Cm-3. A non-linear model was also developed to fit unstable oscillations found in the output profiles produced by abrupt lighting.


Subject(s)
Coloring Agents , Electric Capacitance , Solar Energy , Coloring Agents/chemistry , Electric Power Supplies , Electrodes
2.
Nanotechnology ; 31(27): 275601, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32109905

ABSTRACT

We report a method for the efficient anchoring of cadmium selenide (CdSe) nanoparticles on the surface of different types of multi-walled carbon nanotubes (purified, N-doped, O-doped and exfoliated). Characterization using different types of electron microscopies (SEM, STEM, and TEM), energy dispersive spectroscopy (EDS) and x-ray diffraction showed well anchored CdSe nanoparticles (NP) on the nanotube surfaces, NP shapes and sizes varied with temperature and other synthesis conditions, and formed with good yields. The method here reported does not require previous activation of the carbon nanotube surface by chemical functionalization, nor the use of organic solvents, and the reaction proceeded in aqueous solutions, making this process simpler and more environmentally friendly than others.

SELECTION OF CITATIONS
SEARCH DETAIL
...