Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Adipocyte ; 9(1): 153-169, 2020 12.
Article in English | MEDLINE | ID: mdl-32272872

ABSTRACT

Interactions between macrophages and adipocytes are early molecular factors influencing adipose tissue (AT) dysfunction, resulting in high leptin, low adiponectin circulating levels and low-grade metaflammation, leading to insulin resistance (IR) with increased cardiovascular risk. We report the characterization of AT dysfunction through measurements of the adiponectin/leptin ratio (ALR), the adipo-insulin resistance index (Adipo-IRi), fasting/postprandial (F/P) immunometabolic phenotyping and direct F/P differential gene expression in AT biopsies obtained from symptom-free adults from the GEMM family study. AT dysfunction was evaluated through associations of the ALR with F/P insulin-glucose axis, lipid-lipoprotein metabolism, and inflammatory markers. A relevant pattern of negative associations between decreased ALR and markers of systemic low-grade metaflammation, HOMA, and postprandial cardiovascular risk hyperinsulinemic, triglyceride and GLP-1 curves was found. We also analysed their plasma non-coding microRNAs and shotgun lipidomics profiles finding trends that may reflect a pattern of adipose tissue dysfunction in the fed and fasted state. Direct gene differential expression data showed initial patterns of AT molecular signatures of key immunometabolic genes involved in AT expansion, angiogenic remodelling and immune cell migration. These data reinforce the central, early role of AT dysfunction at the molecular and systemic level in the pathogenesis of IR and immunometabolic disorders.


Subject(s)
Adipose Tissue/metabolism , Precision Medicine , Adult , Cohort Studies , Fasting , Female , Humans , Insulin Resistance , Lipids/blood , Male , Phenotype , Risk Factors
2.
Genes (Basel) ; 9(11)2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30400254

ABSTRACT

Cardiovascular disease (CVD) and type 2 diabetes (T2D) are increasing worldwide. This is mainly due to an unhealthy nutrition, implying that variation in CVD risk may be due to variation in the capacity to manage a nutritional load. We examined the genomic basis of postprandial metabolism. Our main purpose was to introduce the GEMM Family Study (Genetics of Metabolic Diseases in Mexico) as a multi-center study carrying out an ongoing recruitment of healthy urban adults. Each participant received a mixed meal challenge and provided a 5-hours' time course series of blood, buffy coat specimens for DNA isolation, and adipose tissue (ADT)/skeletal muscle (SKM) biopsies at fasting and 3 h after the meal. A comprehensive profiling, including metabolomic signatures in blood and transcriptomic and proteomic profiling in SKM and ADT, was performed to describe tendencies for variation in postprandial response. Our data generation methods showed preliminary trends indicating that by characterizing the dynamic properties of biomarkers with metabolic activity and analyzing multi-OMICS data it could be possible, with this methodology and research design, to identify early trends for molecular biology systems and genes involved in the fasted and fed states.

3.
Gac Med Mex ; 144(6): 473-9, 2008.
Article in Spanish | MEDLINE | ID: mdl-19112718

ABSTRACT

OBJECTIVE: We describe the methodology used to analyze multiple transcripts using microarray techniques in simultaneous biopsies of muscle, adipose tissue and lymphocytes obtained from the same individual as part of the standard protocol of the Genetics of Metabolic Diseases in Mexico: GEMM Family Study. METHODS: We recruited 4 healthy male subjects with BM1 20-41, who signed an informed consent letter. Subjects participated in a clinical examination that included anthropometric and body composition measurements, muscle biopsies (vastus lateralis) subcutaneous fat biopsies anda blood draw. All samples provided sufficient amplified RNA for microarray analysis. Total RNA was extracted from the biopsy samples and amplified for analysis. RESULTS: Of the 48,687 transcript targets queried, 39.4% were detectable in a least one of the studied tissues. Leptin was not detectable in lymphocytes, weakly expressed in muscle, but overexpressed and highly correlated with BMI in subcutaneous fat. Another example was GLUT4, which was detectable only in muscle and not correlated with BMI. Expression level concordance was 0.7 (p< 0.001) for the three tissues studied. CONCLUSIONS: We demonstrated the feasibility of carrying out simultaneous analysis of gene expression in multiple tissues, concordance of genetic expression in different tissues, and obtained confidence that this method corroborates the expected biological relationships among LEPand GLUT4. TheGEMM study will provide a broad and valuable overview on metabolic diseases, including obesity and type 2 diabetes.


Subject(s)
Gene Expression Profiling/methods , Lymphocytes , Muscle, Skeletal , Subcutaneous Fat , Adult , Humans , Lymphocytes/chemistry , Male , Mexico , Muscle, Skeletal/chemistry , RNA/analysis , Subcutaneous Fat/chemistry
4.
Gac. méd. Méx ; 144(6): 473-479, nov.-dic. 2008. ilus, graf, tab
Article in Spanish | LILACS | ID: lil-567775

ABSTRACT

Objetivo: Describir la metodología de análisis de múltiples transcritos con técnicas de microarreglo en biopsias simultáneas de tejido muscular, adiposo y sangre en un mismo individuo, como parte de la estandarización del estudio GEMM (Genética de las Enfermedades Metabólicas en México). Material y métodos: Se incluyó a cuatro sujetos con índice de masa corporal (IMC) entre 20 y 41. Se registró estatura, talla y composición corporal. Se realizó biopsia muscular (vasto lateral), de tejido adiposo subcutáneo y muestra de sangre completa. El ARN total fue extraído de los tejidos y amplificado para análisis de microarreglos. Resultados: De 48 687 potenciales transcritos, 39.4% fue detectable en al menos uno de los tejidos. La expresión de leptina no fue detectable en linfocitos, débilmente expresada en músculo, alta expresión en el tejido adiposo y correlacionó con el IMC. El GLUT4 también ilustra la especificidad para el músculo sin verse afectado por el IMC. La concordancia en la expresión de transcritos fue 0.70 (p<0.001) para los tres tejidos. Conclusiones: Fue factible cuantificar simultáneamente la expresión genética de miles de transcritos, hubo concordancia en la expresión entre diferentes tejidos obtenidos en un mismo individuo, y confiabilidad del método al reproducir las relaciones biológicas esperadas. El estudio GEMM podrá analizar las correlaciones de los transcritos expresados dentro de un órgano y luego entre diferentes tejidos, y proveerá endofenotipos cuantitativos novedosos que proporcionarán un amplio panorama de información sobre las enfermedades metabólicas, incluyendo obesidad y diabetes tipo 2.


OBJECTIVE: We describe the methodology used to analyze multiple transcripts using microarray techniques in simultaneous biopsies of muscle, adipose tissue and lymphocytes obtained from the same individual as part of the standard protocol of the Genetics of Metabolic Diseases in Mexico: GEMM Family Study. METHODS: We recruited 4 healthy male subjects with BM1 20-41, who signed an informed consent letter. Subjects participated in a clinical examination that included anthropometric and body composition measurements, muscle biopsies (vastus lateralis) subcutaneous fat biopsies anda blood draw. All samples provided sufficient amplified RNA for microarray analysis. Total RNA was extracted from the biopsy samples and amplified for analysis. RESULTS: Of the 48,687 transcript targets queried, 39.4% were detectable in a least one of the studied tissues. Leptin was not detectable in lymphocytes, weakly expressed in muscle, but overexpressed and highly correlated with BMI in subcutaneous fat. Another example was GLUT4, which was detectable only in muscle and not correlated with BMI. Expression level concordance was 0.7 (p< 0.001) for the three tissues studied. CONCLUSIONS: We demonstrated the feasibility of carrying out simultaneous analysis of gene expression in multiple tissues, concordance of genetic expression in different tissues, and obtained confidence that this method corroborates the expected biological relationships among LEPand GLUT4. TheGEMM study will provide a broad and valuable overview on metabolic diseases, including obesity and type 2 diabetes.


Subject(s)
Humans , Male , Adult , Lymphocytes , Muscle, Skeletal , Gene Expression Profiling/methods , Subcutaneous Fat , Subcutaneous Fat/chemistry , Lymphocytes/chemistry , Mexico , Muscle, Skeletal/chemistry , RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...