Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(10): e0237570, 2020.
Article in English | MEDLINE | ID: mdl-33044975

ABSTRACT

Photo-identification (photo-id) is a method used in field studies by biologists to monitor animals according to their density, movement patterns and behavior, with the aim of predicting and preventing ecological risks. However, these methods can introduce subjectivity when manually classifying an individual animal, creating uncertainty or inaccuracy in the data as a result of the human criteria involved. One of the main objectives in photo-id is to implement an automated mechanism that is free of biases, portable, and easy to use. The main aim of this work is to develop an autonomous and portable photo-id system through the optimization of image classification algorithms that have high statistical dependence, with the goal of classifying dorsal fin images of the blue whale through offline information processing on a mobile platform. The new proposed methodology is based on the Scale Invariant Feature Transform (SIFT) that, in conjunction with statistical discriminators such as the variance and the standard deviation, fits the extracted data and selects the closest pixels that comprise the edges of the dorsal fin of the blue whale. In this way, we ensure the elimination of the most common external factors that could affect the quality of the image, thus avoiding the elimination of relevant sections of the dorsal fin. The photo-id method presented in this work has been developed using blue whale images collected off the coast of Baja California Sur. The results shown have qualitatively and quantitatively validated the method in terms of its sensitivity, specificity and accuracy on the Jetson Tegra TK1 mobile platform. The solution optimizes classic SIFT, balancing the results obtained with the computational cost, provides a more economical form of processing and obtains a portable system that could be beneficial for field studies through mobile platforms, making it available to scientists, government and the general public.


Subject(s)
Animal Fins/anatomy & histology , Balaenoptera/anatomy & histology , Mobile Applications , Photography/methods , Algorithms , Animals , Databases, Factual , Image Processing, Computer-Assisted/methods , Image Processing, Computer-Assisted/statistics & numerical data , Pattern Recognition, Automated/methods , Pattern Recognition, Automated/statistics & numerical data , Photography/statistics & numerical data
2.
Entropy (Basel) ; 21(4)2019 Apr 16.
Article in English | MEDLINE | ID: mdl-33267115

ABSTRACT

In this paper, we propose the local complexity estimation based filtering method in wavelet domain for MRI (magnetic resonance imaging) denoising. A threshold selection methodology is proposed in which the edge and detail preservation properties for each pixel are determined by the local complexity of the input image. In the proposed filtering method, the current wavelet kernel is compared with a threshold to identify the signal- or noise-dominant pixels in a scale providing a good visual quality avoiding blurred and over smoothened processed images. We present a comparative performance analysis with different wavelets to find the optimal wavelet for MRI denoising. Numerical experiments and visual results in simulated MR images degraded with Rician noise demonstrate that the proposed algorithm consistently outperforms other denoising methods by balancing the tradeoff between noise suppression and fine detail preservation. The proposed algorithm can enhance the contrast between regions allowing the delineation of the regions of interest between different textures or tissues in the processed images. The proposed approach produces a satisfactory result in the case of real MRI denoising by balancing the detail preservation and noise removal, by enhancing the contrast between the regions of the image. Additionally, the proposed algorithm is compared with other approaches in the case of Additive White Gaussian Noise (AWGN) using standard images to demonstrate that the proposed approach does not need to be adapted specifically to Rician or AWGN noise; it is an advantage of the proposed approach in comparison with other methods. Finally, the proposed scheme is simple, efficient and feasible for MRI denoising.

SELECTION OF CITATIONS
SEARCH DETAIL
...