Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
2.
Eur J Ophthalmol ; : 11206721241236919, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444247

ABSTRACT

BACKGROUND: recently much studies evidenced the potential role of photo-biomodulation (PBM) in patients affected by Age-related Macular Degeneration (AMD). We designed a new wearable device for self-medication that employs the same broadband red light described in literature, but with extremely low irradiance. AIM: to demonstrate the safety and effectiveness of low-fluence light stimulations emitted by a LED source with appropriate wavelengths through our new device in improving short-term visual function in patients affected by severe non neovascular AMD. MATERIALS AND METHODS: we prospectively enrolled patients affected by severe non-neovascular AMD with a relative sparing of the foveal region. All the patients were randomly assigned in placebo or in treatment group. The treatment consisted of 10 sessions of 10-min each, using the new device comprised of micro-LEDs that emitted light onto an amorphous support assembled within Metallic eyeglasses. The placebo group blindly underwent the same number of PBM sessions with the micro-LED turned off. Before and after each placebo/treatment sessions all the patients received: optical coherence tomography (OCT), Best-Corrected Visual Acuity (BCVA) and Microperimetry (MP). RESULTS: no significant differences in the anatomical parameters were observed in the two groups. The MP mean sensitivity and the central visual function both far and near significantly improved in the treated group (respectively p < 0.001, p < 0.001). CONCLUSIONS: our pivotal demonstrated that the LED PBM delivered through our new device is a safe and effective tool for improving short-term visual function in patients affected by severe non-neovascular AMD.

3.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542222

ABSTRACT

Mast cells (MCs) are derived from hematopoietic progenitors, mature in vascularized tissues, and participate in innate and acquired immunity. Neuroinflammation is a highly debated topic in the biomedical literature; however, the impact of tumor necrosis factor (TNF) and IL-33 on MCs in the brain has not been widely addressed. MCs can be activated by IgE binding to FcεRI, as well as by different antigens. After activation, MCs mediate various immunological and inflammatory responses through TNF and IL-33. TNF has two receptors: TNFR1, a p55 molecule, and TNFR2, a p75 molecule. This cytokine is the only one of its kind to be stored in the granules of MCs and can also be generated by de novo synthesis via mRNA. In the central nervous system (CNS), TNF is produced almost exclusively by microglial cells, neurons, astrocytes, and, minimally, by endothelial cells. After its release into brain tissue, TNF rapidly induces the adhesion molecules endothelial leukocyte adhesion molecule 1 (ELAM-1), intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) in endothelial cells. TNF causes the chemoattraction of neutrophils by inducing several molecules, including CXC chemokines (IL-8). Both MCs and microglial cells act as a primary barrier against foreign molecules in the CNS, producing pro-inflammatory cytokines such as IL-33. IL-33 belongs to the IL-1 family, is activated through the ST2L/IL1-RAcP receptor complex, and mediates both the innate and adaptive immune response. IL-33 is a nuclear transcription factor expressed in the brain, where it induces pro-inflammatory cytokines (TNF and IL-1) and chemokines (CCL2, CCL3, CCL5, and CXCL10). Therefore, MCs and microglia in the CNS are a source of pro-inflammatory cytokines, including TNF and IL-33, that mediate many brain diseases. The inhibition of TNF and IL-33 may represent a new therapeutic approach that could complement existing neuroinflammatory therapies.


Subject(s)
Cytokines , Neuroinflammatory Diseases , Humans , Cytokines/metabolism , Mast Cells/metabolism , Interleukin-33/metabolism , Endothelial Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , Intercellular Adhesion Molecule-1/metabolism , Interleukin-1/metabolism
4.
Article in English | MEDLINE | ID: mdl-38181512

ABSTRACT

PURPOSE: Retinal capillary hemangioblastoma (RCH) is present in about half of the carriers of the VHL (von Hippel-Lindau) gene mutation and can lead to the evolution of blindness. Herewith is a proposal for surgical intraretinal feeder vessel ligature to induce ischemia the phakoma and to resolve the exudative secondary retinal detachment, with satisfying results at the 6 months follow-up end point. METHODS: The patient underwent a chandelier-assisted 23 G pars plana vitrectomy with valved trocars. A bimanual transretinal ligature of the hemangioblastoma's feeder vessel was performed, followed by localized endolaser to ablate the surrounding retina and capillaries, and a Polydimethylsiloxane 1000 (PDMS 1000) final tamponade. After 3 months, exchange PDMS/air/balanced salt solution (BSS), phacoemulsification, and in-the-bag intraocular lens (IOL) implantation were performed. RESULTS: At sixth month, fundus fluorescein angiography (FFA) showed a significant reduction of blood flow in the phakoma. Final best-corrected visual acuity (BCVA) was 6/6 (9 lines gain obtained compared to the baseline time). CONCLUSIONS: This surgical technique seems to be effective and promising for the treatment of VHL retinal capillary hemangioblastomas and their related retinal complications.

5.
Pathogens ; 12(12)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38133302

ABSTRACT

The biological history of Chlamydia trachomatis is intertwined with the evolution of the man. Infecting Elemental Bodies (EBs), having penetrated mucosal epithelial cells, wrap themselves in a cloak (ĸλαµÎ¹ς) of glycogen that ensures their obligatory intracellular survival and protects this differentiation into Reticulate Bodies (RBs) that feed on cellular ATP. Multiple chemokines and cytokines are involved under the direction of IL-6 in the florid phase and IL-17A in the scar phase. The WHO has successfully identified the SAFE strategy against trachoma (Surgery, Antibiotics, Facial cleansing, Environment) as the blueprint to eliminate the disease by 2020. Recently, interest has been increasingly focused on changing sexual attitudes in different areas of the world, leaving Musca sorbens, Scatophaga stercoraria, and stepsisters fairly blameless, but extolling the role of Chlamydia trachomatis in apparently "sterile" chronic prostatitis or conjunctivitis or, less frequently, in oropharyngitis and proctitis. The addition of an S (SAFE-S) standing for "sexual behavior" was then proposed to also attract the interest and attention not only of Ophthalmologists and Obstetricians/Gynecologists, Urologists/Andrologists, and the School Authorities for information on the prevention of sexually transmitted diseases, but also of Social Physicians and Pediatricians. This means that sexually transmitted infections should be screened in asymptomatic patients with risky sexual behavior or sexual contact with people diagnosed with a transmitted infection.

6.
Microorganisms ; 11(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37764042

ABSTRACT

Among the symptoms of SARS-CoV-2, follicular conjunctivitis has become relevant. The conjunctiva acts as an open lymph node, reacting to the viral antigen that binds the epithelial cells, forming follicles of B cells with activated T cells and NK cells on its surface, which, in turn, talk to monocyte-derived inflammatory infected macrophages. Here, the NLRP3 inflammasome is a major driver in releasing pro-inflammatory factors such as IL-6 and caspase-1, leading to follicular conjunctivitis and bulbar congestion, even as isolated signs in the 'asymptomatic' patient.

7.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902240

ABSTRACT

Mast cells (MCs) are tissue cells that are derived from bone marrow stem cells that contribute to allergic reactions, inflammatory diseases, innate and adaptive immunity, autoimmunity, and mental disorders. MCs located near the meninges communicate with microglia through the production of mediators such as histamine and tryptase, but also through the secretion of IL-1, IL-6 and TNF, which can create pathological effects in the brain. Preformed chemical mediators of inflammation and tumor necrosis factor (TNF) are rapidly released from the granules of MCs, the only immune cells capable of storing the cytokine TNF, although it can also be produced later through mRNA. The role of MCs in nervous system diseases has been extensively studied and reported in the scientific literature; it is of great clinical interest. However, many of the published articles concern studies on animals (mainly rats or mice) and not on humans. MCs are known to interact with neuropeptides that mediate endothelial cell activation, resulting in central nervous system (CNS) inflammatory disorders. In the brain, MCs interact with neurons causing neuronal excitation with the production of neuropeptides and the release of inflammatory mediators such as cytokines and chemokines. This article explores the current understanding of MC activation by neuropeptide substance P (SP), corticotropin-releasing hormone (CRH), and neurotensin, and the role of pro-inflammatory cytokines, suggesting a therapeutic effect of the anti-inflammatory cytokines IL-37 and IL-38.


Subject(s)
Cytokines , Mast Cells , Neuropeptides , Animals , Humans , Mice , Rats , Cytokines/physiology , Inflammation , Mast Cells/drug effects , Mast Cells/physiology , Substance P , Tumor Necrosis Factor-alpha , Neuropeptides/pharmacology , Neuropeptides/physiology
8.
Viruses ; 15(2)2023 01 30.
Article in English | MEDLINE | ID: mdl-36851613

ABSTRACT

Secretory IgA (sIgA), which may play an important role in the early defense against SARS-CoV-2 infection, were detected in the eye of COVID-19 patients. However, an evaluation of the sIgA response in the tears of vaccinated or non-vaccinated COVID-19 subjects is still lacking. Aimed at characterizing sIgA mucosal immunity in the eye, this study analyzed tear samples from 77 COVID-19 patients, including 63 vaccinated and 14 non-vaccinated subjects. The groups showed similar epidemiological features, but as expected, differences were observed in the percentage of asymptomatic/pauci-symptomatic subjects in the vaccinated vs. non-vaccinated cohort (46% and 29% of the total, respectively). Consistent with this, ocular sIgA values, evaluated by a specific quantitative ELISA assay, were remarkably different in vaccinated vs. non-vaccinated group for both frequency (69.8% vs. 57.1%, respectively) and titer (1372.3 U/mL vs. 143.7 U/mL, respectively; p = 0.01), which was significantly differently elevated depending on the type of administered vaccine. The data show for the first time significant differences of available vaccines to elicit sIgA response in the eye and suggest that quantitative tear-based sIgA tests may potentially serve as a rapid and easily accessible biomarker for the assessment of the development of a protective mucosal immunity toward SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Eye , Enzyme-Linked Immunosorbent Assay , Immunoglobulin A, Secretory
9.
Int J Mol Sci ; 23(21)2022 10 31.
Article in English | MEDLINE | ID: mdl-36362030

ABSTRACT

Much evidence suggests autoimmunity in the etiopathogenesis of periodontal disease. In fact, in periodontitis, there is antibody production against collagen, DNA, and IgG, as well as increased IgA expression, T cell dysfunction, high expression of class II MHC molecules on the surface of gingival epithelial cells in inflamed tissues, activation of NK cells, and the generation of antibodies against the azurophil granules of polymorphonuclear leukocytes. In general, direct activation of autoreactive immune cells and production of TNF can activate neutrophils to release pro-inflammatory enzymes with tissue damage in the gingiva. Gingival inflammation and, in the most serious cases, periodontitis, are mainly due to the dysbiosis of the commensal oral microbiota that triggers the immune system. This inflammatory pathological state can affect the periodontal ligament, bone, and the entire gingival tissue. Oral tolerance can be abrogated by some cytokines produced by epithelial cells and activated immune cells, including mast cells (MCs). Periodontal cells and inflammatory-immune cells, including mast cells (MCs), produce cytokines and chemokines, mediating local inflammation of the gingival, along with destruction of the periodontal ligament and alveolar bone. Immune-cell activation and recruitment can be induced by inflammatory cytokines, such as IL-1, TNF, IL-33, and bacterial products, including lipopolysaccharide (LPS). IL-1 and IL-33 are pleiotropic cytokines from members of the IL-1 family, which mediate inflammation of MCs and contribute to many key features of periodontitis and other inflammatory disorders. IL-33 activates several immune cells, including lymphocytes, Th2 cells, and MCs in both innate and acquired immunological diseases. The classic therapies for periodontitis include non-surgical periodontal treatment, surgery, antibiotics, anti-inflammatory drugs, and surgery, which have been only partially effective. Recently, a natural cytokine, IL-37, a member of the IL-1 family and a suppressor of IL-1b, has received considerable attention for the treatment of inflammatory diseases. In this article, we report that IL-37 may be an important and effective therapeutic cytokine that may inhibit periodontal inflammation. The purpose of this paper is to study the relationship between MCs, IL-1, IL-33, and IL-37 inhibition in acute and chronic inflamed gingival tissue.


Subject(s)
Gingivitis , Interleukin-33 , Mast Cells , Humans , Cytokines , Gingivitis/metabolism , Gingivitis/pathology , Inflammation , Interleukin-33/metabolism , Mast Cells/metabolism , Mast Cells/pathology , Periodontitis/metabolism , Periodontitis/pathology , Interleukin-1/metabolism
11.
Microorganisms ; 10(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35744711

ABSTRACT

COVID-19 emerged in late 2019 in China and quickly spread across the globe, causing over 521 million cases of infection and 6.26 million deaths to date. After 2 years, numerous advances have been made. First of all, the preventive vaccine, which has been implemented in record time, is effective in more than 95% of cases. Additionally, in the diagnostic field, there are numerous molecular and antigenic diagnostic kits that are equipped with high sensitivity and specificity. Real Time-PCR-based assays for the detection of viral RNA are currently considered the gold-standard method for SARS-CoV-2 diagnosis and can be used efficiently on pooled nasopharyngeal, or oropharyngeal samples for widespread screening. Moreover, additional, and more advanced molecular methods such as droplet-digital PCR (ddPCR), clustered regularly interspaced short palindromic repeats (CRISPR) and next-generation sequencing (NGS), are currently under development to detect the SARS-CoV-2 RNA. However, as the number of subjects infected with SARS-CoV-2 continuously increases globally, health care systems are being placed under increased stress. Thus, the clinical laboratory plays an important role, helping to select especially asymptomatic individuals who are actively carrying the live replicating virus, with fast and non-invasive molecular technologies. Recent diagnostic strategies, other than molecular methods, have been adopted to either detect viral antigens, i.e., antigen-based immunoassays, or human anti-SARS-CoV-2 antibodies, i.e., antibody-based immunoassays, in nasal or oropharyngeal swabs, as well as in blood or saliva samples. However, the role of mucosal sIgAs, which are essential in the control of viruses entering the body through mucosal surfaces, remains to be elucidated, and in particular the role of the immune response in counteracting SARS-CoV-2 infection, primarily at the site(s) of virus entry that appears to be promising.

12.
Front Oncol ; 12: 828112, 2022.
Article in English | MEDLINE | ID: mdl-35480119

ABSTRACT

Uveal melanoma (UM) is the most frequently found primary intraocular tumor, although it accounts for only 5% of all melanomas. Despite novel systemic therapies, patient survival has remained poor. Indeed, almost half of UM patients develop metastases from micro-metastases which were undetectable at diagnosis. Genetic analysis is crucial for metastatic risk prediction, as well as for patient management and follow-up. Several prognostic parameters have been explored, including tumor location, basal dimension and thickness, histopathologic cell type, vascular mimicry patterns, and infiltrating lymphocytes. Herein, the Authors review the available literature concerning cytogenetic prognostic markers and biochemical pathways correlated to UM metastasis development.

13.
Int J Mol Sci ; 22(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34360845

ABSTRACT

Psoriasis (PS) is a skin disease with autoimmune features mediated by immune cells, which typically presents inflammatory erythematous plaques, and is associated with many comorbidities. PS exhibits excessive keratinocyte proliferation, and a high number of immune cells, including macrophages, neutrophils, Th1 and Th17 lymphocytes, and mast cells (MCs). MCs are of hematopoietic origin, derived from bone marrow cells, which migrate, mature, and reside in vascularized tissues. They can be activated by antigen-provoking overexpression of proinflammatory cytokines, and release a number of mediators including interleukin (IL)-1 and IL-33. IL-1, released by activated keratinocytes and MCs, stimulates skin macrophages to release IL-36-a powerful proinflammatory IL-1 family member. IL-36 mediates both innate and adaptive immunity, including chronic proinflammatory diseases such as psoriasis. Suppression of IL-36 could result in a dramatic improvement in the treatment of psoriasis. IL-36 is inhibited by IL-36Ra, which binds to IL-36 receptor ligands, but suppression can also occur by binding IL-38 to the IL-36 receptor (IL-36R). IL-38 specifically binds only to IL-36R, and inhibits human mononuclear cells stimulated with IL-36 in vitro, sharing the effect with IL-36Ra. Here, we report that inflammation in psoriasis is mediated by IL-1 generated by MCs-a process that activates macrophages to secrete proinflammatory IL-36 inhibited by IL-38. IL-37 belongs to the IL-1 family, and broadly suppresses innate inflammation via IL-1 inhibition. IL-37, in murine models of inflammatory arthritis, causes the suppression of joint inflammation through the inhibition of IL-1. Therefore, it is pertinent to think that IL-37 can play an inhibitory role in inflammatory psoriasis. In this article, we confirm that IL-38 and IL-37 cytokines emerge as inhibitors of inflammation in psoriasis, and hold promise as an innovative therapeutic tool.


Subject(s)
Interleukin-1/immunology , Interleukins/therapeutic use , Psoriasis/immunology , Animals , Humans , Inflammation , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1/therapeutic use , Interleukin-33/immunology , Interleukins/immunology , Mast Cells/immunology , Mast Cells/metabolism , Psoriasis/drug therapy , Skin
14.
J Clin Med ; 10(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34300204

ABSTRACT

PURPOSE: To assess visual performance and quality of life after implantation of diffractive trifocal IOLs with enhanced depth of focus (Acriva Reviol Tri-ED) compared to monofocal IOLs. SETTING: Ophthalmology Clinic, Department of Medicine and Science of Ageing, University "G. d'Annunzio" Chieti-Pescara, Italy. DESIGN: Prospective clinical study. METHODS: This study comprised 36 eyes of 18 patients with senile cataract candidates for phacoemulsification and implantation of the Acriva Reviol Tri-ED (Group 1-18 eyes) and the AcrySof IQ Monofocal IOL SN60WF (Group 2-18 eyes). The main outcome measures, over a 6-month follow-up period, were uncorrected and corrected visual acuity at different distances (40, 60 cm and 4 m), defocus curve, contrast sensitivity and wavefront error. Patient satisfaction was evaluated by means of the NEI-RQL-42 questionnaire. RESULTS: At 180 days postoperatively, the difference of the UCDVA and CDVA between the groups was not statistically significant (p = 0.888 and p = 0.843, respectively). The difference between the groups was statistically significant for UCIVA (p = 0.019) and UCNVA (p = 0.036). The mean values of contrast sensitivity under photopic and mesopic conditions were not significantly different between the groups. The RMS of spherical aberration was significantly lower in Group 1 compared to Group 2. The NEI-RQL-42 questionnaire showed statistically significant differences between the groups for the dependence on correction (p < 0.001). CONCLUSIONS: The diffractive trifocal IOL with enhanced depth of focus Acriva Reviol Tri-ED was effective in improving functional capacity for intermediate and near vision compared to monofocal IOLs and provided a good quality of vision due to a significant reduction in spherical aberration.

15.
Antioxidants (Basel) ; 10(6)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073310

ABSTRACT

Retinitis pigmentosa (RP) is an inherited retinopathy. Nevertheless, non-genetic biological factors play a central role in its pathogenesis and progression, including inflammation, autophagy and oxidative stress. The retina is particularly affected by oxidative stress due to its high metabolic rate and oxygen consumption as well as photosensitizer molecules inside the photoreceptors being constantly subjected to light/oxidative stress, which induces accumulation of ROS in RPE, caused by damaged photoreceptor's daily recycling. Oxidative DNA damage is a key regulator of microglial activation and photoreceptor degeneration in RP, as well as mutations in endogenous antioxidant pathways involved in DNA repair, oxidative stress protection and activation of antioxidant enzymes (MUTYH, CERKL and GLO1 genes, respectively). Moreover, exposure to oxidative stress alters the expression of micro-RNA (miRNAs) and of long non-codingRNA (lncRNAs), which might be implicated in RP etiopathogenesis and progression, modifying gene expression and cellular response to oxidative stress. The upregulation of the P2X7 receptor (P2X7R) also seems to be involved, causing pro-inflammatory cytokines and ROS release by macrophages and microglia, contributing to neuroinflammatory and neurodegenerative progression in RP. The multiple pathways analysed demonstrate that oxidative microglial activation may trigger the vicious cycle of non-resolved neuroinflammation and degeneration, suggesting that microglia may be a key therapy target of oxidative stress in RP.

16.
Eur J Ophthalmol ; : 11206721211015576, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33977779

ABSTRACT

INTRODUCTION: Few months after the COVID-19 pandemic burst, many aspects of the human life, including education, dramatically changed. Because of the lockdown measures taken to limit the virus spread in Italy, in-person teaching and learning have been interrupted in all health care disciplines and readapted in virtual formulae. METHODS: As academic ophthalmology departments, we had to maintain the educational needs of medical and orthoptic students, internships, surgical training of residents, as well as to cover the scientific update of health care personnel (HCPs), and the continuation of research and academic activities. To assure these needs we ideated an educational strategy and a team, which was then translated on a multichannel virtual platform created with Microsoft Teams. RESULTS: In this platform there were 21 channels organized in a public view mode, open to all Team members, or in private view mode to separate non-permanent HCPs, internships, residents, and students' tasks, from permanent HCPs tasks. Virtual channels were dedicated to provide theoretical lessons, clinical cases, surgical video, internal meetings and webinar, to offer news from scientific societies, requests of appointments from biomedical companies, links with ophthalmological websites, to move forward research projects, to participate at institutional academic duties, and to obtain feedbacks from users. Residents continued their training on surgery using a surgical simulator, after consulting an agenda uploaded into the dedicated virtual channel. CONCLUSION: These positive initial results should represent a boost to rapidly proceed with the development of even more versatile virtual learning solutions, given that the forecasts for the duration of the COVID-19 pandemic are not encouraging.

17.
Biofactors ; 47(2): 165-169, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33755250

ABSTRACT

Luteolin belongs to the flavone family originally present in some fruits and vegetables, including olives, which decrease intracellular levels of reactive oxygen species (ROS) following the activation of various stimuli. Luteolin inhibits inflammation, a complex process involving immune cells that accumulate at the site of infectious or non-infectious injury, with alteration of the endothelium leading to recruitment of leukocytes. Cytokines have been widely reported to act as immune system mediators, and IL-1 family members evolved to assist in host defense against infections. Interleukin (IL)-1 and Toll-like receptor (TLR) are involved in the innate immunity in almost all living organisms. After being synthesized, IL-1 induces numerous inflammatory mediators including itself, other pro-inflammatory cytokines/chemokines, and arachidonic acid products, which contribute to the pathogenesis of immune diseases. Among the 11 members of the IL-1 family, there are two new cytokines that suppress inflammation, IL-37 and IL-38. IL-38 binds IL-36 receptor (IL-1R6) and inhibits several pro-inflammatory cytokines, including IL-6, through c-Jun N-terminal kinase (JNK) induction and reducing AP1 and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) activity, alleviating inflammatory diseases. Therefore, since luteolin, IL-37 and IL-38 are all anti-inflammatory molecules with different signaling pathways, it is pertinent to recommend the combination of luteolin with these anti-inflammatory cytokines in inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Interleukins/immunology , Luteolin/pharmacology , Anti-Inflammatory Agents/immunology , Humans , Luteolin/immunology
18.
Int J Mol Sci ; 21(12)2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32560266

ABSTRACT

Sjögren's syndrome (SS) is a chronic autoimmune inflammatory disease that affects primarily older women and is characterized by irreversible damage of the exocrine glands, including tear (xerophthalmia) and salivary glands (xerostomia). Secretory glands lose their functionality due to the infiltration of immune cells, which produce cytokines and cause inflammation. Primary SS is characterized by dry syndrome with or without systemic commitment in the absence of other pathologies. Secondary SS is accompanied by other autoimmune diseases with high activation of B lymphocytes and the production of autoantibodies, including the rheumatoid factor. Other cells, such as CD4+ T cells and mast cells (MCs), participate in SS inflammation. MCs are ubiquitous, but are primarily located close to blood vessels and nerves and can be activated early in autoimmune diseases to express a wide variety of cytokines and chemokines. In the SS acute phase, MCs react by generating chemical mediators of inflammation, tumor necrosis factor (TNF), and other pro-inflammatory cytokines such as interleukin (IL)-1 and IL-33. IL-33 is the specific ligand for ST2 capable of inducing some adaptive immunity TH2 cytokines but also has pro-inflammatory properties. IL-33 causes impressive pathological changes and inflammatory cell infiltration. IL-1 family members can have paracrine and autocrine effects by exacerbating autoimmune inflammation. IL-37 is an IL-1 family cytokine that binds IL-18Rα receptor and/or Toll-like Receptor (TLR)4, exerting an anti-inflammatory action. IL-37 is a natural inhibitor of innate and acquired immunity, and the level is abnormal in patients with autoimmune disorders. After TLR ligand activation, IL-37 mRNA is generated in the cytoplasm, with the production of pro-IL-37 and later mature IL-37 caspase-1 mediated; both precursor and mature IL-37 are biologically active. Here, we discuss, for the first time, the current knowledge of IL-37 in autoimmune disease SS and propose a new therapeutic role.


Subject(s)
Interleukin-1/metabolism , Interleukin-33/metabolism , Sjogren's Syndrome/immunology , CD4-Positive T-Lymphocytes/metabolism , Cytoplasm/genetics , Female , Gene Expression Regulation , Humans , Interleukin-1/genetics , Mast Cells/drug effects , Mast Cells/immunology , Sjogren's Syndrome/genetics
19.
Med Hypotheses ; 144: 109876, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32562915

ABSTRACT

The new zoonotic coronavirus (SARS-CoV-2) responsible for coronavirus disease (COVID-19) is a new strain of coronavirus not previously seen in humans and which appears to come from bat species. It originated in Wuhan, Hubei Province, China, and spread rapidly throughout the world, causing over 5,569,679 global cases and 351,866 deaths in almost every country in the world, including Europe, particularly Italy. In general, based on existing data published to date, 80.9% of patients infected with the virus develop mild infection; 13.8% severe pneumonia; 4.7% respiratory failure, septic shock or multi-organ failure; 3% of these cases are fatal. Critical patients have been shown to develop acute respiratory distress syndrome (ARDS) and hospitalization in intensive care units. The average age of patients admitted to hospital is 57-79 years, with one third half with an underlying disease. Asymptomatic infections have also been described, but their frequency is not known. SARS-CoV-2 transmission is mainly airborne from one person to another via droplets. The data available so far seem to indicate that SARS-CoV-2 is capable of producing an excessive immune reaction in the host. The virus attacks type II pneumocytes in the lower bronchi through the binding of the Spike protein (S protein) to viral receptors, of which the angiotensin 2 conversion enzyme (ACE2) receptor is the most important. ACE2 receptor is widely expressed in numerous tissues, including the oropharynx and conjunctiva, but mostly distributed in ciliated bronchial epithelial cells and type II pneumocytes in the lower bronchi. The arrival of SARS-CoV-2 in the lungs causes severe primary interstitial viral pneumonia that can lead to the "cytokine storm syndrome", a deadly uncontrolled systemic inflammatory response triggered by the activation of interleukin 6 (IL-6), whose effect is extensive lung tissue damage and disseminated intravascular coagulation (DIC), that are life-threatening for patients with COVID-19. In the absence of a therapy of proven efficacy, current management consists of off-label or compassionate use therapies based on antivirals, antiparasitic agents in both oral and parenteral formulation, anti-inflammatory drugs, oxygen therapy and heparin support and convalescent plasma. Like most respiratory viruses can function and replicate at low temperatures (i.e. 34-35 °C) and assuming viral thermolability of SARS-CoV-2, local instillation or aerosol of antiviral (i.e. remdesivir) in humid heat vaporization (40°-41 °C) in the first phase of infection (phenotype I, before admission), both in asymptomatic but nasopharyngeal swab positive patients, together with antiseptic-antiviral oral gargles and povidone-iodine eye drops for conjunctiva (0,8-5% conjunctival congestion), would attack the virus directly through the receptors to which it binds, significantly decreasing viral replication, risk of evolution to phenotypes IV and V, reducing hospitalization and therefore death.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Aerosols , Alanine/analogs & derivatives , Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Lung/drug effects , Adenosine Monophosphate/administration & dosage , Alanine/administration & dosage , Animals , Humans , Inflammation , Models, Theoretical , Phenotype , Povidone-Iodine/administration & dosage , SARS-CoV-2
20.
Med Hypotheses ; 143: 109856, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32460208

ABSTRACT

A novel human coronavirus SARS-CoV-2 (also referred to as CoV-19) that emerged in late 2019 causes Covid-19 disease a respiratory tract infection which provokes about 4 million deaths per year. Unfortunately, to date, there is no specific antiviral treatment for COVID-19. Mast cells (MCs) are immune cells implicated in the pathogenesis of viral infections, where they mediate inflammation. Microbes, including virus, activate MCs through TLR releasing chemical pro-inflammatory compounds and cytokines. Although, in biomedical literature there are only few reports on MCs activation by SARS-CoV-2 infection. The production of pro-inflammatory cytokines by MC viral activation leads to increase pulmonary inflammation and fibrosis. Sodium Chromo-Glycate (SCG) described as a MC stabilizer, prevents the release of inflammatory chemical compounds, improve mouse survival and respiratory pathological changes in lung viral infection and suppresses inflammation. Furthermore, palmitoylethanolamide (PEA) a nuclear factor agonist, an endogenous fatty acid amide, which exerts a variety of biological effects, related to chronic inflammation and pain, is involved also in MCs homeostasis with an inhibitory and protective effect on the respiratory tract during viral infections. Here, we hypothesize for the first time, that SCG and/or PEA suppress MC activation and pro-inflammatory mediators release, playing an anti-inflammatory therapeutic role in the inflamed lung of patients with COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Cromolyn Sodium/administration & dosage , Ethanolamines/administration & dosage , Inflammation/drug therapy , Lung/drug effects , Mast Cells/drug effects , Palmitic Acids/administration & dosage , Pneumonia, Viral/drug therapy , Amides , Animals , Antiviral Agents/administration & dosage , COVID-19 , Drug Therapy, Combination , Humans , Mice , Models, Theoretical , Pandemics , Respiratory Tract Infections/drug therapy , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...