Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(12): 5176-5186, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36917706

ABSTRACT

Research on graphene-related two-dimensional (2D) materials (GR2Ms) in recent years is strongly moving from academia to industrial sectors with many new developed products and devices on the market. Characterization and quality control of the GR2Ms and their properties are critical for growing industrial translation, which requires the development of appropriate and reliable analytical methods. These challenges are recognized by International Organization for Standardization (ISO 229) and International Electrotechnical Commission (IEC 113) committees to facilitate the development of these methods and standards which are currently in progress. Toward these efforts, the aim of this study was to perform an international interlaboratory comparison (ILC), conducted under Versailles Project on Advanced Materials and Standards (VAMAS) Technical Working Area (TWA) 41 "Graphene and Related 2D Materials" to evaluate the performance (reproducibility and confidence) of the thermogravimetric analysis (TGA) method as a potential new method for chemical characterization of GR2Ms. Three different types of representative and industrially manufactured GR2Ms samples, namely, pristine few-layer graphene (FLG), graphene oxide (GO), and reduced graphene oxide (rGO), were used and supplied to ILC participants to complete the study. The TGA method performance was evaluated by a series of measurements of selected parameters of the chemical and physical properties of these GR2Ms including the number of mass loss steps, thermal stability, temperature of maximum mass change rate (Tp) for each decomposition step, and the mass contents (%) of moisture, oxygen groups, carbon, and impurities (organic and non-combustible residue). TGA measurements determining these parameters were performed using the provided optimized TGA protocol on the same GR2Ms by 12 participants across academia, industry stakeholders, and national metrology institutes. This paper presents these results with corresponding statistical analysis showing low standard deviation and statistical conformity across all participants that confirm that the TGA method can be satisfactorily used for characterization of these parameters and the chemical characterization and quality control of GR2Ms. The common measurement uncertainty for each parameter, key contribution factors were identified with explanations and recommendations for their elimination and improvements toward their implementation for the development of the ISO/IEC standard for chemical characterization of GR2Ms.

2.
Anal Bioanal Chem ; 414(15): 4409-4425, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35234982

ABSTRACT

Surface functionalization is widely used to control the behavior of nanomaterials for a range of applications. However, methods to accurately quantify surface functional groups and coatings are not yet routinely applied to nanomaterial characterization. We have employed a combination of quantitative NMR (qNMR) and thermogravimetric analysis (TGA) to address this problem for commercial cerium, nickel, and iron oxide nanoparticles (NPs) that have been modified to add functional coatings with (3-aminopropyl)triethoxysilane (APTES), stearic acid, and polyvinylpyrrolidone (PVP). The qNMR method involves quantification of material that is released from the NPs and quantified in the supernatant after removal of NPs. Removal of aminopropylsilanes was accomplished by basic hydrolysis whereas PVP and stearic acid were removed by ligand exchange using sodium hexametaphosphate and pentadecafluorooctanoic acid, respectively. The method accuracy was confirmed by analysis of NPs with a known content of surface groups. Complementary TGA studies were carried out in both air and argon atmosphere with FT-IR of evolved gases in argon to confirm the identity of the functional groups. TGA measurements for some unfunctionalized samples show mass loss due to unidentified components which makes quantification of functional groups in surface-modified samples less reliable. XPS provides information on the presence of surface contaminants and the level of surface hydroxylation for selected samples. Despite the issues associated with accurate quantification using TGA, the TGA estimates agree reasonably well with the qNMR data for samples with high surface loading. This study highlights the issues in analysis of commercial nanomaterials and is an advance towards the development of generally applicable methods for quantifying surface functional groups.


Subject(s)
Metal Nanoparticles , Nanoparticles , Argon , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Oxides , Particle Size , Spectroscopy, Fourier Transform Infrared
3.
ACS Omega ; 6(41): 27418-27429, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34693163

ABSTRACT

The high-temperature plasma process has demonstrated great potential in growing high-quality boron nitride nanotubes (BNNTs) with small diameters (∼5 nm) and few walls (3-4 walls) and led to successful commercialization with a high production rate approaching 20 g/h. However, the process is still accompanied by the production of BN impurities (e.g., a-BN, BN shell, BN flakes) whose physicochemical properties are similar to those of BNNTs. This renders the post-purification process very challenging and thus hampers the development of their practical applications. In this study, we have employed both experimental and numerical approaches for a mechanistic understanding of BN impurity formation in the high-temperature plasma process. This study suggests that the flow structure of the plasma jet (e.g., laminar or turbulent) plays a key role in the formation of BN impurities by dictating the transport phenomena of BNNT seeds (e.g., B droplets), which play an important role in BNNT nucleation. We discussed that the turbulence enhances the radial diffusion of B droplets as well as their interparticle coagulation, which leads to a significant reduction in the population of effective BNNT seeds in the BNNT growth zone (T < 4000 K). This results in the generation of unreacted BN precursors (e.g., B-N-H species) in the BNNT growth zone that eventually self-assemble into BN impurities. Our numerical simulation also suggests that a higher thermal energy input makes the flow more turbulent in the BNNT growth zone due to the elevated velocity difference between the plasma jet and ambient cold gas. This finding provides critical insight into the process design that can suppress the BN impurity formation in the high-temperature plasma process.

SELECTION OF CITATIONS
SEARCH DETAIL
...