Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(21): 9687-9700, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38743642

ABSTRACT

The f block is a comparatively understudied group of elements that find applications in many areas. Continued development of technologies involving the lanthanides (Ln) and actinides (An) requires a better fundamental understanding of their chemistry. Specifically, characterizing the electronic structure of the f elements presents a significant challenge due to the spatially core-like but energetically valence-like nature of the f orbitals. This duality led f-block scientists to hypothesize for decades that f-block chemistry is dominated by ionic metal-ligand interactions with little covalency because canonical covalent interactions require both spatial orbital overlap and orbital energy degeneracy. Recent studies on An compounds have suggested that An ions can engage in appreciable orbital mixing between An 5f and ligand orbitals, which was attributed to "energy-degeneracy-driven covalency". This model of bonding has since been a topic of debate because different computational methods have yielded results that support and refute the energy-degeneracy-driven covalency model. In this Viewpoint, literatures concerning the metal- and ligand-edge X-ray absorption near-edge structure (XANES) of five tetravalent f-block systems─MO2 (M = Ln, An), LnF4, MCl62-, and [Ln(NP(pip)3)4]─are compiled and discussed to explore metal-ligand bonding in f-block compounds through experimental metrics. Based on spectral assignments from a variety of theoretical models, covalency is seen to decrease from CeO2 and PrO2 to TbO2 through weaker ligand-to-metal charge-transfer (LMCT) interactions, while these LMCT interactions are not observed in the trivalent Ln sesquixodes until Yb. In comparison, while XANES characterization of AnO2 compounds is scarce, computational modeling of available X-ray absorption spectra suggests that covalency among AnO2 reaches a maximum between Am and Cm. Moreover, a decrease in covalency is observed upon changing ligands while maintaining an isostructural coordination environment from CeO2 to CeF4. These results could allude to the importance of orbital energy degeneracy in f-block bonding, but there are a variety of data gaps and conflicting results from different modeling techniques that need to be addressed before broad conclusions can be drawn.

2.
Inorg Chem ; 62(39): 15819-15823, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37713645

ABSTRACT

A family of thorium complexes featuring the redox-noninnocent pyridinediimine ligand MesPDIMe was synthesized, including (MesPDIMe)ThCl4 (1-Th), (MesPDIMe)ThCl3(THF) (2-Th), (MesPDIMe)ThCl2(THF)2 (3-Th) and [(MesPDIMe)Th(THF)]2 (5-Th) Full characterization of these species shows that these complexes feature MesPDIMe in four different oxidation states. The electronic structures of these complexes have been explored using 1H NMR and electronic absorption spectroscopies, X-ray crystallography, and SQUID magnetometry where appropriate.

3.
RSC Adv ; 13(9): 6017-6026, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36814872

ABSTRACT

The effect of varying 1-alcohol alkyl chain length on extraction of lanthanides (Lns), H2O, and H+ was studied with tetraoctyl diglycolamide (TODGA) via solvent extraction coupled with FT-IR investigations. This multi-faceted approach provided understanding regarding the relationship between extracted Lns, H2O and H+, 1-alcohol volume fraction, and 1-alcohol alkyl chain length. Under acidic conditions there is competition with 1-alcohols and their ability to solubilize aggregates and incidentally induce third phase formation by increasing the extraction of H2O. At low 1-alcohol concentrations (5 vol%), the trend for 1-alcohol alkyl lengths in solubilizing the aggregates is 1-hexanol > 1-octanol > 1-decanol. Shorter alkyl chains suppress aggregation, ultimately resulting in lower H2O concentrations and less available TODGA to hydrogen bond with H+. Increasing the 1-alcohol concentration to 30 vol% results in the opposite trend, with longer alkyl chains suppressing aggregation. These results suggest this approach is effective at probing trends in the organic phase micro-structure, and indicates trends across the Ln period with various 1-alcohol alkyl chain lengths are a function of outer-sphere coordination.

4.
Inorg Chem ; 60(20): 15242-15252, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34569783

ABSTRACT

Using a redox-active dioxophenoxazine ligand, DOPO (DOPO = 2,4,6,8-tetra-tert-butyl-1-oxo-1H-phenoxazine-9-olate), a family of actinide (U, Th, Np, and Pu) and Hf tris(ligand) coordination compounds was synthesized. The full characterization of these species using 1H NMR spectroscopy, electronic absorption spectroscopy, SQUID magnetometry, and X-ray crystallography showed that these compounds are analogous and exist in the form M(DOPOq)2(DOPOsq), where two ligands are of the oxidized quinone form (DOPOq) and the third is of the reduced semiquinone (DOPOsq) form. The electronic structures of these complexes were further investigated using CASSCF calculations, which revealed electronic structures consistent with metals in the +4 formal oxidation state and one unpaired electron localized on one ligand in each complex. Furthermore, f orbitals of the early actinides show a sizable bonding overlap with the ligand 2p orbitals. Notably, this is the first example of a plutonium-ligand radical species and a rare example of magnetic data being recorded for a homogeneous plutonium coordination complex.

5.
Chemistry ; 26(41): 8885-8888, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32315469

ABSTRACT

Well-characterized complexes of transplutonium elements are scarce because of the experimental challenges of working with these elements and the rarity of the isotopes. This leads to a lack of structural and spectroscopic data needed to understand the nature of chemical bonds in these compounds. In this work, the synthesis of Cf(DOPOq )2 (NO3 )(py) (DOPOq =2,4,6,8-tetra-tert-butyl-1-oxo-1H-phenoxazin-9-olate; py=pyridine) is reported, in which the nitrate anion is hypothesized to form through the α-radiolysis-induced reaction of pyridine and/or the ligand. Computational analysis of the electronic structure of the complex reveals that the CfIII -ligand interactions are largely ionic.

6.
Dalton Trans ; 48(23): 8021-8025, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31020980

ABSTRACT

The synthesis of a redox series of neodymium species bearing the redox active pyridine(diimine) ligand, MesPDIMe, is reported. Spectroscopic and structural characterization supports each compound has a Nd(iii) centre, with the MesPDIMe ligand existing in four oxidation states.

7.
J Am Chem Soc ; 141(6): 2356-2366, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30714372

ABSTRACT

An isostructural family of f-element compounds (Ce, Nd, Sm, Gd; Am, Bk, Cf) of the redox-active dioxophenoxazine ligand (DOPOq; DOPO = 2,4,6,8-tetra- tert-butyl-1-oxo-1 H-phenoxazin-9-olate) was prepared. This family, of the form M(DOPOq)3, represents the first nonaqueous isostructural series, including the later actinides berkelium and californium. The lanthanide derivatives were fully characterized using 1H NMR spectroscopy and SQUID magnetometry, while all species were structurally characterized by X-ray crystallography and electronic absorption spectroscopy. In order to probe the electronic structure of this new family, CASSCF calculations were performed and revealed these systems to be largely ionic in contrast to previous studies, where berkelium and californium typically have a small degree of covalent character. To validate the zeroth order regular approximation (ZORA) method, the same CASSCF analysis using experimental structures versus UDFT-ZORA optimized structures does not exhibit sizable changes in bonding patterns. This shows that UDFT-ZORA combined with CASSCF could be a useful first approximation to predict and investigate the structure and electronic properties of actinides and lanthanides that are difficult to synthesize or characterize.

8.
Dalton Trans ; 47(41): 14452-14461, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30168828

ABSTRACT

Characterizing how actinide properties change across the f-element series is critical for improving predictive capabilities and solving many nuclear problems facing our society. Unfortunately, it is difficult to make direct comparisons across the 5f-element series because so little is known about trans-plutonium elements. Results described herein help to address this issue through isolation of An(S2CNEt2)3(N2C12H8) (Am, Cm, and Cf). These findings included the first single crystal X-ray diffraction measurements of Cm-S (mean of 2.86 ± 0.04 Å) and Cf-S (mean of 2.84 ± 0.04 Å) bond distances. Furthermore, they highlight the potential of An(S2CNEt2)3(N2C12H8) for providing a test bed for comparative analyses of actinide versus lanthanide bonding interactions.

9.
J Am Chem Soc ; 140(5): 1674-1685, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29320850

ABSTRACT

A series of f-block chromates, CsM(CrO4)2 (M = La, Pr, Nd, Sm, Eu; Am), were prepared revealing notable differences between the AmIII derivatives and their lanthanide analogs. While all compounds form similar layered structures, the americium compound exhibits polymorphism and adopts both a structure isomorphous with the early lanthanides as well as one that possesses lower symmetry. Both polymorphs are dark red and possess band gaps that are smaller than the LnIII compounds. In order to probe the origin of these differences, the electronic structure of α-CsSm(CrO4)2, α-CsEu(CrO4)2, and α-CsAm(CrO4)2 were studied using both a molecular cluster approach featuring hybrid density functional theory and QTAIM analysis and by the periodic LDA+GA and LDA+DMFT methods. Notably, the covalent contributions to bonding by the f orbitals were found to be more than twice as large in the AmIII chromate than in the SmIII and EuIII compounds, and even larger in magnitude than the Am-5f spin-orbit splitting in this system. Our analysis indicates also that the Am-O covalency in α-CsAm(CrO4)2 is driven by the degeneracy of the 5f and 2p orbitals, and not by orbital overlap.

11.
Inorg Chem ; 56(21): 12692-12694, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29068199

ABSTRACT

The reaction of Th(NO3)4·5H2O with 3 equiv of 2,2',6',2″-terpyridine (terpy) in a mixture of acetonitrile and methanol results in formation of the trinuclear thorium peroxide cluster [Th(O2)(terpy)(NO3)2]3. This cluster is assembled via bridging by µ-η2:η2 peroxide anions between thorium centers. It decomposes upon removal from the mother liquor to yield Th(terpy)(NO3)4 and Th(terpy)(NO3)4(EtOH). The peroxide formation appears to be radiolytic in origin and is, most likely, generated from radiolysis of water by short-lived daughters generated from 232Th decay. This cluster does not form when freshly recrystallized Th(NO3)4·5H2O is used as the starting material and requires an aged source of thorium. Analysis of the bonding in these clusters shows that, unlike uranium(VI) peroxide interactions, thorium(IV) complexation by peroxide is quite weak and largely ionic. This explains its much lower stability, which is more comparable to that observed in similar zirconium(IV) peroxide clusters.

12.
Nat Chem ; 9(9): 856-861, 2017 09.
Article in English | MEDLINE | ID: mdl-28837172

ABSTRACT

Electron transfer in mixed-valent transition-metal complexes, clusters and materials is ubiquitous in both natural and synthetic systems. The degree to which intervalence charge transfer (IVCT) occurs, dependent on the degree of delocalization, places these within class II or III of the Robin-Day system. In contrast to the d-block, compounds of f-block elements typically exhibit class I behaviour (no IVCT) because of localization of the valence electrons and poor spatial overlap between metal and ligand orbitals. Here, we report experimental and computational evidence for delocalization of 5f electrons in the mixed-valent PuIII/PuIV solid-state compound, Pu3(DPA)5(H2O)2 (DPA = 2,6-pyridinedicarboxylate). The properties of this compound are benchmarked by the pure PuIII and PuIV dipicolinate complexes, [PuIII(DPA)(H2O)4]Br and PuIV(DPA)2(H2O)3·3H2O, as well as by a second mixed-valent compound, PuIII[PuIV(DPA)3H0.5]2, that falls into class I instead. Metal-to-ligand charge transfer is involved in both the formation of Pu3(DPA)5(H2O)2 and in the IVCT.

13.
J Am Chem Soc ; 139(38): 13361-13375, 2017 09 27.
Article in English | MEDLINE | ID: mdl-28817775

ABSTRACT

The reaction of 249Bk(OH)4 with iodate under hydrothermal conditions results in the formation of Bk(IO3)3 as the major product with trace amounts of Bk(IO3)4 also crystallizing from the reaction mixture. The structure of Bk(IO3)3 consists of nine-coordinate BkIII cations that are bridged by iodate anions to yield layers that are isomorphous with those found for AmIII, CfIII, and with lanthanides that possess similar ionic radii. Bk(IO3)4 was expected to adopt the same structure as M(IO3)4 (M = Ce, Np, Pu), but instead parallels the structural chemistry of the smaller ZrIV cation. BkIII-O and BkIV-O bond lengths are shorter than anticipated and provide further support for a postcurium break in the actinide series. Photoluminescence and absorption spectra collected from single crystals of Bk(IO3)4 show evidence for doping with BkIII in these crystals. In addition to luminescence from BkIII in the Bk(IO3)4 crystals, a broad-band absorption feature is initially present that is similar to features observed in systems with intervalence charge transfer. However, the high-specific activity of 249Bk (t1/2 = 320 d) causes oxidation of BkIII and only BkIV is present after a few days with concomitant loss of both the BkIII luminescence and the broadband feature. The electronic structure of Bk(IO3)3 and Bk(IO3)4 were examined using a range of computational methods that include density functional theory both on clusters and on periodic structures, relativistic ab initio wave function calculations that incorporate spin-orbit coupling (CASSCF), and by a full-model Hamiltonian with spin-orbit coupling and Slater-Condon parameters (CONDON). Some of these methods provide evidence for an asymmetric ground state present in BkIV that does not strictly adhere to Russel-Saunders coupling and Hund's Rule even though it possesses a half-filled 5f 7 shell. Multiple factors contribute to the asymmetry that include 5f electrons being present in microstates that are not solely spin up, spin-orbit coupling induced mixing of low-lying excited states with the ground state, and covalency in the BkIV-O bonds that distributes the 5f electrons onto the ligands. These factors are absent or diminished in other f7 ions such as GdIII or CmIII.

14.
Inorg Chem ; 55(21): 11454-11461, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27740770

ABSTRACT

The complexation of selected trivalent lanthanide ions with derivatives of the tetranitrogen donor ligands 6,6'-bis-1R,1H-1,2,3-triazol-4-yl-2,2'-bipyridines (BTzBPs, R = alkyl or aryl) was investigated in solid state and in solution. An anhydrous solid [Ce(Bn-BTzBP)(NO3)3] (Bn = benzene) complex was synthesized and characterized by single-crystal X-ray diffraction. Eu(III) complexes with the 2-ethyl(hexyl) derivative EH-BTzBP in methanol were studied by time-resolved fluorescence spectroscopy. Earlier studies have identified the EH-BTzBP as a potentially useful solvent extraction reagent for the separation of americium from lanthanide metal ions, a challenging component of advanced nuclear fuel cycles for actinide transmutation. To help identify species formed in the extraction process, the influence of 2-bromohexanoic acid (identified as an essential component of the separation system) on Eu(III) complexes was investigated. Comparison with an organic phase after extraction of Eu(III) by EH-BTzBP and 2-bromohexanoic acid showed that both 1:1 and 1:2 (Eu/EH-BTzBP) complexes are involved in the extraction. UV-visible spectrophotometry was used to compare Eu(III) stability constants with those of other Ln(III) complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...