Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 31(13): 1441-7, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21214003

ABSTRACT

This paper reviews some catalytic wet air oxidation (CWAO) investigations of industrial wastewaters over platinum and ruthenium catalysts supported on TiO2 and ZrO2 formulated to be active and resistant to leaching, with particular focus on the stability of the catalyst. Catalyst recycling experiments were performed in batch reactors and long-term stability tests were conducted in trickle-bed reactors. The catalyst did not leach upon treatment of Kraft bleaching plant and olive oil mill effluents, and could be either recycled or used for long periods of time in continuous reactors. Conversely, these catalysts were rapidly leached when used to treat effluents from the production of polymeric membranes containing N,N-dimethylformamide. The intermediate formation of amines, such as dimethylamine and methylamine with a high complexing capacity for the metal, was shown to be responsible for the metal leaching. These heterogeneous catalysts also deactivated upon CWAO of sewage sludges due to the adsorption of the solid organic matter. Pre-sonication of the sludge to disintegrate the flocs and improve solubility was inefficient.


Subject(s)
Air , Industrial Waste , Metals/chemistry , Sewage , Water Pollutants/chemistry , Catalysis , Oxidation-Reduction
2.
Chemistry ; 6(6): 949-58, 2000 Mar 17.
Article in English | MEDLINE | ID: mdl-10785815

ABSTRACT

The catalytic hydrogenation of (S)-alkyl-N-(2-methylbenzoyl)pyroglutamates was studied over supported rhodium and ruthenium catalysts at room temperature and a pressure of 5 MPa. The reaction was diastereoselective with the predominant formation of (1S,2R)-2-methylcyclohexane carboxylic acid with a diastereomeric excess (de) of up to 96%. The most stable conformation was determined by means of a combination of modelling calculations, NMR spectroscopy and X-ray structural determination. In this conformation, the carbonyl group of the pyroglutamate auxiliary shields one face of the aromatic ring. The observed selectivity may thus be explained by a preferential adsorption at the unshielded face which avoids steric repulsion by the C=O group to result in a cis hydrogenation. The addition of an amine, the nature of the support (alumina or active carbon) or of the metal (Rh or Ru) were shown to give additional stabilisation of the adsorption at the unshielded face to increase the diastereoisomeric excess.

SELECTION OF CITATIONS
SEARCH DETAIL
...