Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38088745

ABSTRACT

Purpose: To determine NCX 470 (0.1%) and Lumigan® (bimatoprost ophthalmic solution, 0.01%-LUM) intraocular pressure (IOP)-lowering activity after single or repeated (5 days) dosing along with changes in aqueous humor (AH) dynamics. Methods: Ocular hypotensive activity of NCX 470 and LUM was compared with vehicle (VEH) in Beagle dogs using TonoVet®. Non-human primates (NHP) and bioengineered three-dimensional (3D) human Trabecular Meshwork/Schlemm's Canal (HTM/HSC™) constructs exposed to transforming growth factor-ß2 (TGFß2) were used to monitor NCX 470 and LUM-induced changes in AH dynamics. Results: NCX 470 (30 µL/eye) showed greater IOP reduction compared with LUM (30 µL/eye) following single AM dosing [maximum change from baseline (CFBmax) = -1.39 ± 0.52, -6.33 ± 0.73, and -3.89 ± 0.66 mmHg (mean ± standard error of the mean) for VEH, NCX 470, and LUM, respectively]. Likewise, repeated 5 days daily dosing of NCX 470 resulted in lower IOP than LUM across the duration of the study (average IOP decrease across tests was -0.45 ± 0.22, -6.06 ± 0.15, and -3.60 ± 0.22 mmHg for VEH, NCX 470, and LUM, respectively). NCX 470 increased outflow facility (Cfl) in vivo in NHP (CflVEH = 0.37 ± 0.09 µL/min/mmHg and CflNCX470 = 0.64 ± 0.17 µL/min/mmHg) as well as in vitro (CHTM/HSC) in HTM/HSC constructs (CHTM/HSC_VEH = 0.47 ± 0.02 µL/min/mm2/mmHg and CHTM/HSC_NCX470 = 0.76 ± 0.03 µL/min/mm2/mmHg). In addition, NCX 470 increased uveoscleral outflow (FuVEH = 0.62 ± 0.26 µL/min and FuNCX470 = 1.53 ± 0.39 µL/min with episcleral venous pressure of 15 mmHg) leaving unaltered aqueous flow (AHFVEH = 2.03 ± 0.22 µL/min and AHFNCX470 = 1.93 ± 0.31 µL/min) in NHP. Conclusions: NCX 470 elicits greater IOP reduction than LUM following single or repeated dosing. Data in NHP and 3D-HTM/HSC constructs suggest that changes in Cfl and Fu account for the robust IOP-lowering effect of NCX 470.

2.
Transl Vis Sci Technol ; 12(9): 22, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37750744

ABSTRACT

Purpose: The purpose of this study was to assess the retinal protective activity and ocular hemodynamics after NCX 470 (0.1%) compared to bimatoprost administered as the US Food and Drug Administration (FDA)-approved drug (Lumigan - 0.01% ophthalmic solution, LUM) and at an equimolar dose (0.072%, BIM) to that released by NCX 470. Methods: Endothelin-1 (ET-1) induced ischemia/reperfusion injury model in rabbits was used. ET-1 was injected nearby the optic nerve head (ONH) twice/week for 6 weeks. Starting on week 3, the animals received vehicle (VEH), NCX 470, LUM, or BIM (30 µL/eye, twice daily, 6 days/week) until the end of ET-1 treatment. Intraocular pressure (IOP), ophthalmic artery resistive index (OA-RI), and electroretinogram (ERG) data were collected prior to dosing and at different time points postdosing. Reduced glutathione, 8-Hydroxy 2-deoxyguanosine, and Caspase-3 were determined in the retina of treated eyes. DNA fragmentation was determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining. Results: ET-1 increased IOP (VEHIOP_Baseline = 20.5 ± 0.8 and VEHIOP_Week6 = 24.8 ± 0.3 mmHg) and OA-RI (VEHOA-RI_Baseline = 0.36 ± 0.02 and VEHOA-RI_Week6 = 0.55 ± 0.01) and reduced rod/cone responses over time. Oxidative stress, inflammation, and apoptotic markers increased in ET-1-treated eyes. NCX 470 prevented IOP (NCX 470IOP_Week6 = 18.1 ± 0.6 mmHg) and OA-RI changes (NCX 470OA-RI_Week6 = 0.33 ± 0.01) and restored ERG amplitude leaving unaltered the respective latency; these effects were only partially demonstrated by LUM or BIM. Additionally, NCX 470 reduced oxidative stress, inflammation, and apoptosis in the retinas of treated eyes. BIM and LUM were numerically less effective on these parameters. Conclusions: NCX 470 repeated ocular dosing ameliorates ocular hemodynamics and retinal cell dysfunction caused by ischemia/reperfusion via nitric oxide- and bimatoprost-mediated mechanisms. Translational Relevance: If confirmed in clinical setting our data may open new therapeutic opportunities to reduce visual field loss in glaucoma.


Subject(s)
Glaucoma , Optic Disk , Reperfusion Injury , United States , Animals , Rabbits , Bimatoprost , Cytoprotection , Ophthalmic Artery , Hemodynamics , Retina , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control
3.
J Ocul Pharmacol Ther ; 38(7): 496-504, 2022 09.
Article in English | MEDLINE | ID: mdl-35787180

ABSTRACT

Purpose: Determine whether NCX 470, a nitric oxide (NO)-donating bimatoprost with clinically demonstrated intraocular pressure (IOP)-lowering effects, improves ocular hemodynamics and retinal physiology. Methods: Endothelin-1 (ET-1)-induced ischemia/reperfusion model in New Zealand white rabbits was used. ET-1 was injected next to the optic nerve twice/week (Monday and Thursday) for 6 weeks. Starting on week 3, animals received NCX 470 (0.1% bid, 6 days/week Monday-Saturday) or vehicle until the end of ET-1 treatment. IOP, ophthalmic artery resistive index (OA-RI) and retina physiology (electroretinogram, ERG) were determined before dosing and at different times post-dosing. All measurements were taken on Mondays before the AM daily dosing (36 h treatment-free). Finally, oxidative stress markers were determined in dissected retina and iris/ciliary body of treated eyes. Results: Injection of ET-1 progressively increased IOP (20.7 ± 0.6, 24.9 ± 1.2, and 27.0 ± 0.6 mmHg at baseline, week 2 and 6, respectively) and OA-RI (0.30 ± 0.02, 0.39 ± 0.02, and 0.42 ± 0.03 at baseline, week 2 and 6, respectively) and reduced rods and/or cones response as indicated by changes in ERG amplitudes under different stimulating conditions. NCX 470 re-established baseline IOP (21.8 ± 1.0 mmHg), OA-RI (0.33 ± 0.02), and ERG amplitude by week 6 (mostly rod response, 0.01Dark_AVeh_6week = 32.2 ± 3.0 µV and 0.01Dark_ANCX470_6week 44.3 ± 4.5 µV; mostly cone response, 3.0Dark_AVeh_6week = 87.6 ± 10.1 µV and 3.0Dark_ANCX470_6week = 122.8 ± 11.4 µV; combined rod/cone response, 3.0Light_AVeh_6week = 49.8 ± 6.5 µV and 3.0Light_ANCX470_6week = 64.2 ± 6.8 µV). NCX 470 also reversed ET-1-induced changes in glutathione and manganese superoxide dismutase (oxidative stress markers) in retina and iris/ciliary body. Conclusions: Repeated ocular topical dosing with NCX 470 reverses ET-1-induced changes in IOP, OA-RI, and ERG suggesting improved ocular hemodynamics and retinal physiology likely independently from its demonstrated IOP-lowering effect.


Subject(s)
Ocular Hypertension , Reperfusion Injury , Animals , Cell Physiological Phenomena , Endothelin-1/pharmacology , Endothelin-1/therapeutic use , Hemodynamics , Intraocular Pressure , Ocular Hypertension/drug therapy , Optic Nerve , Rabbits , Reperfusion Injury/drug therapy , Retina
4.
Invest Ophthalmol Vis Sci ; 62(3): 17, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33704360

ABSTRACT

Purpose: NCX 667, a novel nitric oxide (NO) donor with an isomannide core, was characterized for its IOP-lowering ability in animal models of ocular hypertension and glaucoma. Bioengineered human trabecular meshwork/Schlemm's canal (HTM/HSC) constructs were used to explore the mode of action. Methods: Ocular normotensive New Zealand white (NZW) rabbits (ONT-rabbits), spontaneously ocular hypertensive pigmented Dutch-belted rabbits (sOHT-rabbits), hypertonic saline (5%)-induced transient ocular hypertensive NZW rabbits (tOHT-rabbits), ocular normotensive Beagle dogs (ONT-dogs), and laser-induced ocular hypertensive cynomolgus monkeys (OHT-monkeys) were used. NCX 667 or vehicle (30 µL) was instilled in a crossover, masked fashion and intraocular pressure (IOP) measured before dosing (baseline) and for several hours thereafter. The ONT-rabbits were used for cyclic guanosine monophosphate (cGMP) determination in ocular tissues after ocular dosing with NCX 667. Transforming growth factor-beta2 (TGFß2) (2.5 ng/mL, six days)-treated HTM/HSC constructs were used to address changes in outflow facility. Results: NCX 667 resulted in robust and dose-dependent IOP decrease in all models used. Maximal IOP-lowering efficacy at 1% was -4.1 ± 0.6, -12.2 ± 2.7, -10.5 ± 2.0, -5.3 ± 0.8, and -6.6 ± 1.9 mmHg, respectively, in ONT-dogs, sOHT-rabbits, tOHT-rabbits, ONT-rabbits, and OHT-monkeys. In ONT-rabbits NCX 667 (1%) increased cGMP in aqueous humor (AH) but not in retina and iris/ciliary body. NCX 667 concentration-dependently increased outflow facility in TGFß2-treated HTM/HSC constructs (outflow facility, 0.10 ± 0.06 and 0.30 ± 0.10 µL/min/mmHg/mm2, respectively, in vehicle- and NCX 667-treated constructs). Conclusions: NCX 667 leads to robust IOP lowering in several animal models. Evidence in HTM/HSC constructs indicate that the IOP reduction likely results from NO-mediated increase of the conventional outflow pathway. Other mechanisms including changes in AH production and episcleral vein pressure may not be excluded at this time.


Subject(s)
Intraocular Pressure/drug effects , Limbus Corneae/drug effects , Nitric Oxide Donors/therapeutic use , Ocular Hypertension/drug therapy , Trabecular Meshwork/drug effects , Animals , Aqueous Humor/physiology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cyclic GMP/metabolism , Disease Models, Animal , Dogs , Female , Limbus Corneae/metabolism , Macaca fascicularis , Rabbits , Trabecular Meshwork/metabolism , Transforming Growth Factor beta2/pharmacology
5.
J Ocul Pharmacol Ther ; 37(4): 215-222, 2021 05.
Article in English | MEDLINE | ID: mdl-33595367

ABSTRACT

Purpose: We studied the IOP-lowering effects of NCX 1741, a novel nitric oxide (NO)-donating derivative of the phosphodiesterase type-5 inhibitor, avanafil, in Cynomolgus monkey with laser-induced ocular hypertension (OHT-monkeys). NCX 1193 (NO-donating moiety), NCX 1744 (NCX 1741 without ester nitrate moiety), and travoprost (PGF2α analogue) were used for comparison. Ocular exposure after NCX 1741 dosing also was addressed. Methods: Vehicle (phosphate buffer pH 6.0, Kolliphor® 5%, DMSO 0.3%, benzalkonium chloride 0.02%), NCX 1741, NCX 1193, NCX 1744, or travoprost were instilled (30 µL; single dose) masked and conscious IOPs were measured by pneumatonometry. LC-MS/MS-based methods were employed to monitor ocular exposure of NCX 1741 and main metabolites after ocular dosing in New Zealand White rabbits. Results: NCX 1741 (2.2%, 0.8 µmol/eye) lowered IOP with an Emax (ΔΔIOP, IOP change vs. pre-dose and vehicle) between 5 and 8 h post-dosing (ΔΔIOP5h, -5.3 ± 2.0 mmHg and ΔΔIOP8h, -6.0 ± 2.1 mmHg). Conversely, equimolar (0.47%, 0.8 µmol/eye) NCX 1193 IOP-lowering effects were maximal 3 h post-dosing (ΔΔIOP3h, -4.7 ± 1.6 mmHg) and declined thereafter (ΔΔIOP5h, -1.6 ± 1.1 mmHg). In a follow-up study, NCX 1741 (1.5%, 0.5 µmol/eye) was more effective than NCX 1744 despite a similar duration. Further, NCX 1741 was as effective as travoprost (0.1%, 0.06 µmol/eye) at 5 and 8 h post-dosing (travoprost, ΔΔIOP5h, -3.4 ± 2.2 mmHg and ΔΔIOP8h, -4.9 ± 1.3 mmHg) but had shorter duration (NCX 1741, ΔΔIOP24h, -1.5 ± 1.1 mmHg; travoprost, ΔΔIOP24h, -7.1 ± 2.8 mmHg). NCX 1741 resulted in significant aqueous humor exposure, as determined by the levels of the main metabolite, avanafil. Conclusions: NCX 1741 rapidly and effectively lowers IOP in OHT-monkeys for several hours post-dosing. How these effects translate in humans is still to be defined.


Subject(s)
Dinoprost/analogs & derivatives , Intraocular Pressure/drug effects , Ocular Hypertension/drug therapy , Pyrimidines/pharmacology , Animals , Anti-Infective Agents, Local/administration & dosage , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/pharmacology , Aqueous Humor/drug effects , Aqueous Humor/metabolism , Benzalkonium Compounds/administration & dosage , Chromatography, Liquid/methods , Female , Follow-Up Studies , Macaca fascicularis , Models, Animal , Nitric Oxide/metabolism , Nitric Oxide Donors/metabolism , Phosphodiesterase 5 Inhibitors/metabolism , Pyrimidines/administration & dosage , Pyrimidines/therapeutic use , Rabbits , Tandem Mass Spectrometry/methods , Tonometry, Ocular/methods , Travoprost/administration & dosage , Travoprost/pharmacology
6.
Bioconjug Chem ; 31(3): 513-519, 2020 03 18.
Article in English | MEDLINE | ID: mdl-31927891

ABSTRACT

Perfluorinated organic compounds (PFCs) are nontoxic, biocompatible, bioavailable, and bioorthogonal species which possess the unique ability to segregate away from both polar and nonpolar solvents producing a compact fluorophilic phase. Traditional techniques of fluorous chemical proteomics are generally applied to enrich biological samples in target protein(s) exploiting this property of PFCs to build fluorinated probes able to covalently bind to protein ensembles and being selectively extracted by fluorophilic solvents. Aiming at building a strategy able to avoid irreversible modification of the analyzed biosystem, a novel fully noncovalent probe is presented as an enabling tool for the recognition and isolation of biological protein(s). In our strategy, both the fluorophilic extraction and the biorecognition of a selected protein successfully occur via the establishment of reversible but selective interactions.


Subject(s)
Fluorocarbons/chemistry , Molecular Probes/chemistry , Proteins/chemistry , Adsorption , Models, Molecular , Papain/chemistry , Protein Conformation
7.
ChemMedChem ; 14(23): 1982-1994, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31665565

ABSTRACT

The treatment of malaria, the most common parasitic disease worldwide and the third deadliest infection after HIV and tuberculosis, is currently compromised by the dramatic increase and diffusion of drug resistance among the various species of Plasmodium, especially P. falciparum (Pf). In this view, the development of new antiplasmodial agents that are able to act via innovative mechanisms of action, is crucial to ensure efficacious antimalarial treatments. In one of our previous communications, we described a novel class of compounds endowed with high antiplasmodial activity, characterized by a pharmacophore never described before as antiplasmodial and identified by their 4,4'-oxybisbenzoyl amide cores. Here, through a detailed structure-activity relationship (SAR) study, we thoroughly investigated the chemical features of the reported scaffolds and successfully built a novel antiplasmodial agent active on both chloroquine (CQ)-sensitive and CQ-resistant Pf strains in the low nanomolar range, without displaying cross-resistance. Moreover, we conducted an in silico pharmacophore mapping.


Subject(s)
Antimalarials/chemical synthesis , Chloroquine/analogs & derivatives , Chloroquine/chemical synthesis , Malaria/drug therapy , Plasmodium falciparum/drug effects , Amines/chemistry , Animals , Antimalarials/pharmacology , Chloroquine/pharmacology , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Resistance , Humans , Kidney/drug effects , Microbial Viability , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship
9.
PLoS One ; 10(11): e0142509, 2015.
Article in English | MEDLINE | ID: mdl-26566224

ABSTRACT

Malaria is an infectious disease caused by Plasmodium parasites. It results in an annual death-toll of ~ 600,000. Resistance to all medications currently in use exists, and novel antimalarial drugs are urgently needed. Plasmepsin V (PmV) is an essential Plasmodium protease and a highly promising antimalarial target, which still lacks molecular characterization and drug-like inhibitors. PmV, cleaving the PExEl motif, is the key enzyme for PExEl-secretion, an indispensable parasitic process for virulence and infection. Here, we describe the accessibility of PmV catalytic pockets to inhibitors and propose a novel strategy for PmV inhibition. We also provide molecular and structural data suitable for future drug development. Using high-throughput platforms, we identified a novel scaffold that interferes with PmV in-vitro at picomolar ranges (~ 1,000-fold more active than available compounds). Via systematic replacement of P and P' regions, we assayed the physico-chemical requirements for PmV inhibition, achieving an unprecedented IC50 of ~20 pM. The hydroxyethylamine moiety, the hydrogen acceptor group in P2', the lipophilic groups upstream to P3, the arginine and other possible substitutions in position P3 proved to be critically important elements in achieving potent inhibition. In-silico analyses provided essential QSAR information and model validation. Our inhibitors act 'on-target', confirmed by cellular interference of PmV function and biochemical interaction with inhibitors. Our inhibitors are poorly performing against parasite growth, possibly due to poor stability of their peptidic component and trans-membrane permeability. The lowest IC50 for parasite growth inhibition was ~ 15 µM. Analysis of inhibitor internalization revealed important pharmacokinetic features for PExEl-based molecules. Our work disclosed novel pursuable drug design strategies for highly efficient PmV inhibition highlighting novel molecular elements necessary for picomolar activity against PmV. All the presented data are discussed in respect to human aspartic proteases and previously reported inhibitors, highlighting differences and proposing new strategies for drug development.


Subject(s)
Antimalarials/pharmacology , Aspartic Acid Endopeptidases/antagonists & inhibitors , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Protease Inhibitors/pharmacology , Protozoan Proteins/antagonists & inhibitors , Antimalarials/chemistry , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Catalytic Domain/drug effects , Humans , Malaria, Falciparum/parasitology , Molecular Docking Simulation , Plasmodium falciparum/chemistry , Plasmodium falciparum/enzymology , Plasmodium falciparum/growth & development , Protease Inhibitors/chemistry , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...