Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(16): eado0668, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38630815

ABSTRACT

Quantum entanglement between the degrees of freedom encountered in the classical world is challenging to observe due to the surrounding environment. To elucidate this issue, we investigate the entanglement generated over ultrafast timescales in a bipartite quantum system comprising two massive particles: a free-moving photoelectron, which expands to a mesoscopic length scale, and a light-dressed atomic ion, which represents a hybrid state of light and matter. Although the photoelectron spectra are measured classically, the entanglement allows us to reveal information about the dressed-state dynamics of the ion and the femtosecond extreme ultraviolet pulses delivered by a seeded free-electron laser. The observed generation of entanglement is interpreted using the time-dependent von Neumann entropy. Our results unveil the potential for using short-wavelength coherent light pulses from free-electron lasers to generate entangled photoelectron and ion systems for studying spooky action at a distance.

2.
Nature ; 608(7923): 488-493, 2022 08.
Article in English | MEDLINE | ID: mdl-35978126

ABSTRACT

Rabi oscillations are periodic modulations of populations in two-level systems interacting with a time-varying field1. They are ubiquitous in physics with applications in different areas such as photonics2, nano-electronics3, electron microscopy4 and quantum information5. While the theory developed by Rabi was intended for fermions in gyrating magnetic fields, Autler and Townes realized that it could also be used to describe coherent light-matter interactions within the rotating-wave approximation6. Although intense nanometre-wavelength light sources have been available for more than a decade7-9, Rabi dynamics at such short wavelengths has not been directly observed. Here we show that femtosecond extreme-ultraviolet pulses from a seeded free-electron laser10 can drive Rabi dynamics between the ground state and an excited state in helium atoms. The measured photoelectron signal reveals an Autler-Townes doublet and an avoided crossing, phenomena that are both fundamental to coherent atom-field interactions11. Using an analytical model derived from perturbation theory on top of the Rabi model, we find that the ultrafast build-up of the doublet structure carries the signature of a quantum interference effect between resonant and non-resonant photoionization pathways. Given the recent availability of intense attosecond12 and few-femtosecond13 extreme-ultraviolet pulses, our results unfold opportunities to carry out ultrafast manipulation of coherent processes at short wavelengths using free-electron lasers.

3.
Sci Adv ; 8(12): eabl7594, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35319974

ABSTRACT

Imaging in real time the complete dynamics of a process as fundamental as photoemission has long been out of reach because of the difficulty of combining attosecond temporal resolution with fine spectral and angular resolutions. Here, we achieve full decoding of the intricate angle-dependent dynamics of a photoemission process in helium, spectrally and anisotropically structured by two-photon transitions through intermediate bound states. Using spectrally and angularly resolved attosecond electron interferometry, we characterize the complex-valued transition probability amplitude toward the photoelectron quantum state. This allows reconstructing in space, time, and energy the complete formation of the photoionized wave packet.

4.
J Chem Phys ; 153(13): 134303, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33032417

ABSTRACT

Using a synchrotron-based Fourier-transform spectrometer, the high-resolution absorption spectra of the C1-symmetric 2,3-dihydrofuran (23DHF) and C2v-symmetric 2,5-dihydrofuran (25DHF) have been measured from 5.5 eV to 9.4 eV with an absolute absorption cross section scale. Oscillator strengths and vertical excitation energies of the lowest 18 states have been computed using the average of the second- and third-order algebraic diagrammatic construction polarization propagator method and the equation-of-motion coupled-cluster method at the level of singles and doubles model. These show that the bright valence transitions of ππ*-character are embedded into Rydberg transitions, whose oscillator strengths are at least one order of magnitude lower. To account for intensity borrowing, the first broad valence transition between 5.5 eV and 6.8 eV was simulated using a nuclear ensemble, and the agreement between experiment and theory is excellent. Whereas 23DHF only exhibits one broad valence transition followed by d/f Rydberg series converging to the ionization energy, the absorption spectrum of 25DHF has four bands, attributed to a valence nπσ → π*-transition, nπσ → 3px,z/3dxz transitions, a second valence nπ → π*-transition followed by d/f Rydberg series converging to the ionization energy, respectively. All Rydberg series converging to the ionization energy have been characterized in terms of their quantum defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...