Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Nanotechnol ; 12(3): 481-90, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27280246

ABSTRACT

Gold nanoparticles are chemically fabricated and tuned to strongly absorb near infrared (NIR) light, enabling deep optical penetration and therapy within human tissues, where sufficient heating induces tumour necrosis. In our studies we aim to establish the optimal gold nanorod (GNR) concentration and laser power for inducing hyperthermic effects in tissues and test this photothermal effect on ex vivo human oesophagogastric adenocarcinoma. The ideal GNR concentration and NIR laser power that would elicit sufficient hyperthermia for tumour necrosis was pre-determined on porcine oesophageal tissues. Human ex vivo oesophageal and gastric adenocarcinoma tissues were incubated with GNR solutions and a GNR-free control solution with corresponding healthy tissues for comparison, then irradiated with NIR light for 10 minutes. Temperature rise was found to vary linearly with both the concentration of GNRs and the laser power. Human ex vivo oesophageal and gastric tissues consistently demonstrated a significant temperature rise when incubated in an optimally concentrated GNR solution (3 x 10(10) GNRs/ml) prior to NIR irradiation delivered at an optimal power (2 W/cm2). A mean temperature rise of 27 degrees C was observed in tissues incubated with GNRs, whereas only a modest 2 degrees C rise in tissues not exposed to any GNRs. This study evaluates the photothermal effects of GNRs on oesophagogastric tissue examines their application in the minimally invasive therapeutics of oesophageal and gastric adenocarcinomas. This could potentially be an effective method of clinically inducing irreversible oesophagogastric tumour photodestruction, with minimal collateral damage expected in (healthy) tissues free from GNRs.


Subject(s)
Adenocarcinoma/drug therapy , Esophageal Neoplasms/drug therapy , Metal Nanoparticles/therapeutic use , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Stomach Neoplasms/drug therapy , Adenocarcinoma/pathology , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Esophageal Neoplasms/pathology , Gold/therapeutic use , Humans , Metal Nanoparticles/ultrastructure , Nanotubes/chemistry , Nanotubes/ultrastructure , Particle Size , Photosensitizing Agents/chemical synthesis , Stomach Neoplasms/pathology , Swine , Treatment Outcome , Tumor Cells, Cultured
2.
Anal Chem ; 85(9): 4316-20, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23600767

ABSTRACT

Semiconducting polymer dot (Pdot) bioconjugates are a new class of ultrabright fluorescent probes. Here, we report a procedure for lyophilizing Pdot bioconjugates so that they successfully retain their optical properties, colloidal stability, and cell-targeting capability during storage. We found that, when Pdot bioconjugates were lyophilized in the presence of 10% sucrose, the rehydrated Pdot bioconjugates did not show any signs of aggregation and exhibited the same hydrodynamic diameters as before lyophilization. The brightness of the lyophilized Pdots was at least as good as before lyophilization, but in some cases, the quantum yield of lyophilized Pdots curiously showed an improvement. Finally, using flow cytometry, we demonstrated that lyophilized Pdot bioconjugates retained their biological targeting properties and were able to effectively label cells; in fact, cells labeled with lyophilized Pdot bioconjugates composed of PFBT, which were stored for 6 months at -80 °C, were ~22% brighter than those labeled with identical but unlyophilized Pdot bioconjugates. These results indicate lyophilization may be a preferred approach for storing and shipping Pdot bioconjugates, which is an important practical consideration for ensuring Pdots are widely adopted in biomedical research.


Subject(s)
Fluorescent Dyes/chemistry , Polymers/chemistry , Quantum Dots , Flow Cytometry , Fluorescent Dyes/chemical synthesis , Freeze Drying , Humans , Neoplastic Cells, Circulating/pathology , Semiconductors , Tumor Cells, Cultured
3.
Chemistry ; 18(5): 1528-35, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22213028

ABSTRACT

Two rotaxanes with benzyl ether axles and tetralactam wheels were synthesized through an anion template effect. They carry naphthalene chromophores attached to the stopper groups and a pyrene chromophore attached to the wheel. The difference between the two rotaxanes is represented by the connecting unit of the naphthyl chromophore to the rotaxane axle: a triazole or an alkynyl group. Both rotaxanes exhibit excellent light-harvesting properties: excitation of the naphthalene chromophores is followed by energy transfer to the pyrene unit with efficiency higher than 90% in both cases. This represents an example of light-harvesting function among chromophores belonging to mechanically interlocked components, that is, the axle and the wheel of the rotaxanes.

SELECTION OF CITATIONS
SEARCH DETAIL
...