Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Biometeorol ; 67(10): 1509-1522, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37507579

ABSTRACT

The number and diversity of phenological studies has increased rapidly in recent years. Innovative experiments, field studies, citizen science projects, and analyses of newly available historical data are contributing insights that advance our understanding of ecological and evolutionary responses to the environment, particularly climate change. However, many phenological data sets have peculiarities that are not immediately obvious and can lead to mistakes in analyses and interpretation of results. This paper aims to help researchers, especially those new to the field of phenology, understand challenges and practices that are crucial for effective studies. For example, researchers may fail to account for sampling biases in phenological data, struggle to choose or design a volunteer data collection strategy that adequately fits their project's needs, or combine data sets in inappropriate ways. We describe ten best practices for designing studies of plant and animal phenology, evaluating data quality, and analyzing data. Practices include accounting for common biases in data, using effective citizen or community science methods, and employing appropriate data when investigating phenological mismatches. We present these best practices to help researchers entering the field take full advantage of the wealth of available data and approaches to advance our understanding of phenology and its implications for ecology.


Subject(s)
Climate Change , Trees , Animals , Humans , Seasons , Data Collection , Volunteers
2.
Biol Conserv ; 276: 109788, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36408461

ABSTRACT

The COVID-19 pandemic is stimulating improvements in remote access and use of technology in conservation-related programs and research. In many cases, organizations have intended for remote engagement to benefit groups that have been marginalized in the sciences. But are they? It is important to consider how remote access affects social justice in conservation biology-i.e., the principle that all people should be equally respected and valued in conservation organizations, programs, projects, and practices. To support such consideration, we describe a typology of justice-oriented principles that can be used to examine social justice in a range of conservation activities. We apply this typology to three conservation areas: (1) remote access to US national park educational programs and data; (2) digitization of natural history specimens and their use in conservation research; and (3) remote engagement in conservation-oriented citizen science. We then address the questions: Which justice-oriented principles are salient in which conservation contexts or activities? How can those principles be best realized in those contexts or activities? In each of the three areas we examined, remote access increased participation, but access and benefits were not equally distributed and unanticipated consequences have not been adequately addressed. We identify steps that can and are being taken to advance social justice in conservation, such as assessing programs to determine if they are achieving their stated social justice-oriented aims and revising initiatives as needed. The framework that we present could be used to assess the social justice dimensions of many conservation programs, institutions, practices, and policies.

3.
Ecology ; 103(5): e3646, 2022 05.
Article in English | MEDLINE | ID: mdl-35076936

ABSTRACT

Concord, Massachusetts, USA has served as an active location for phenological observations since philosopher and naturalist Henry David Thoreau began recording plant and animal occurrence and phenology in 1851. Since that time, numerous naturalists, scientists, and researchers have continued this tradition, creating an invaluable time series of 758 species in a single location. In total, 13,441 phenological records, spanning 118 years, now exist, with observations of many species ongoing. Relative abundance data for an additional 200 plant species is also provided. Thoreau's published journals and records in Special Collections libraries at the Concord Free Public Library, Harvard University, Peabody Essex Museum, and Morgan Library and Museum provide insight into his methods of routinely walking around Walden Pond, through natural areas, and within the town of Concord, seeking the first leaf or flower on plants, seasonal observations of migratory birds, and fruit maturation times. Several amateur naturalists, and most recently the present research group, have followed this method of regularly searching Concord for the earliest signs of seasonal events, visiting many of the same locations including Walden Pond, the site made famous by Thoreau. While Thoreau's observations were initially made out of a curious desire to document the natural world, these data have led to dozens to contemporary studies, addressing timely issues such as climate change, conservation, ecology, and invasive species. This time series of data, initiated by Thoreau and continued by others, has resulted in dozens of peer-reviewed publications, a popular science book, and numerous educational and outreach opportunities. These data grow increasingly valuable with time and as new and creative studies are undertaken with Thoreau's historic records. No copyright restrictions apply to the use of this data set other than citing this publication.


Subject(s)
Flowers , Plants , Animals , Birds , Climate Change , Humans , Massachusetts , Plant Leaves , Seasons
4.
Am J Bot ; 108(11): 2112-2126, 2021 11.
Article in English | MEDLINE | ID: mdl-34755895

ABSTRACT

Plant phenology research has surged in recent decades, in part due to interest in phenological sensitivity to climate change and the vital role phenology plays in ecology. Many local-scale studies have generated important findings regarding the physiology, responses, and risks associated with shifts in plant phenology. By comparison, our understanding of regional- and global-scale phenology has been largely limited to remote sensing of green-up without the ability to differentiate among plant species. However, a new generation of analytical tools and data sources-including enhanced remote sensing products, digitized herbarium specimen data, and public participation in science-now permits investigating patterns and drivers of phenology across extensive taxonomic, temporal, and spatial scales, in an emerging field that we call macrophenology. Recent studies have highlighted how phenology affects dynamics at broad scales, including species interactions and ranges, carbon fluxes, and climate. At the cusp of this developing field of study, we review the theoretical and practical advances in four primary areas of plant macrophenology: (1) global patterns and shifts in plant phenology, (2) within-species changes in phenology as they mediate species' range limits and invasions at the regional scale, (3) broad-scale variation in phenology among species leading to ecological mismatches, and (4) interactions between phenology and global ecosystem processes. To stimulate future research, we describe opportunities for macrophenology to address grand challenges in each of these research areas, as well as recently available data sources that enhance and enable macrophenology research.


Subject(s)
Climate Change , Ecosystem , Plants , Seasons
5.
Biol Conserv ; 257: 109038, 2021 May.
Article in English | MEDLINE | ID: mdl-34580547

ABSTRACT

The COVID-19 pandemic has disrupted the timing and substance of conservation research, management, and public engagement in protected areas around the world. This disruption is evident in US national parks, which play a key role in protecting natural and cultural resources and providing outdoor experiences for the public. Collectively, US national parks protect 34 million ha, host more than 300 million visits annually, and serve as one of the world's largest informal education organizations. The pandemic has altered park conditions and operations in a variety of ways. Shifts in operational conditions related to safety issues, reduced staffing, and decreased park revenues have forced managers to make difficult trade-offs among competing priorities. Long-term research and monitoring of the health of ecosystems and wildlife populations have been interrupted. Time-sensitive management practices, such as control of invasive plants and restoration of degraded habitat, have been delayed. And public engagement has largely shifted from in-person experiences to virtual engagement through social media and other online interactions. These changes pose challenges for accomplishing important science, management, and public engagement goals, but they also create opportunities for developing more flexible monitoring programs and inclusive methods of public engagement. The COVID-19 pandemic reinforces the need for strategic science, management planning, flexible operations, and online public engagement to help managers address rapid and unpredictable challenges.

6.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34103391

ABSTRACT

As COVID-19 continues to spread across the world, it is increasingly important to understand the factors that influence its transmission. Seasonal variation driven by responses to changing environment has been shown to affect the transmission intensity of several coronaviruses. However, the impact of the environment on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains largely unknown, and thus seasonal variation remains a source of uncertainty in forecasts of SARS-CoV-2 transmission. Here we address this issue by assessing the association of temperature, humidity, ultraviolet radiation, and population density with estimates of transmission rate (R). Using data from the United States, we explore correlates of transmission across US states using comparative regression and integrative epidemiological modeling. We find that policy intervention ("lockdown") and reductions in individuals' mobility are the major predictors of SARS-CoV-2 transmission rates, but, in their absence, lower temperatures and higher population densities are correlated with increased SARS-CoV-2 transmission. Our results show that summer weather cannot be considered a substitute for mitigation policies, but that lower autumn and winter temperatures may lead to an increase in transmission intensity in the absence of policy interventions or behavioral changes. We outline how this information may improve the forecasting of COVID-19, reveal its future seasonal dynamics, and inform intervention policies.


Subject(s)
COVID-19/transmission , Cold Temperature , Population Density , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/legislation & jurisprudence , Forecasting , Humans , Movement , SARS-CoV-2 , Seasons , United States/epidemiology
7.
New Phytol ; 231(3): 917-932, 2021 08.
Article in English | MEDLINE | ID: mdl-33890323

ABSTRACT

Botanical gardens make unique contributions to climate change research, conservation, and public engagement. They host unique resources, including diverse collections of plant species growing in natural conditions, historical records, and expert staff, and attract large numbers of visitors and volunteers. Networks of botanical gardens spanning biomes and continents can expand the value of these resources. Over the past decade, research at botanical gardens has advanced our understanding of climate change impacts on plant phenology, physiology, anatomy, and conservation. For example, researchers have utilized botanical garden networks to assess anatomical and functional traits associated with phenological responses to climate change. New methods have enhanced the pace and impact of this research, including phylogenetic and comparative methods, and online databases of herbarium specimens and photographs that allow studies to expand geographically, temporally, and taxonomically in scope. Botanical gardens have grown their community and citizen science programs, informing the public about climate change and monitoring plants more intensively than is possible with garden staff alone. Despite these advances, botanical gardens are still underutilized in climate change research. To address this, we review recent progress and describe promising future directions for research and public engagement at botanical gardens.


Subject(s)
Climate Change , Plants , Ecosystem , Phylogeny
8.
Ann Bot ; 128(2): 159-170, 2021 07 30.
Article in English | MEDLINE | ID: mdl-33830225

ABSTRACT

BACKGROUND AND AIMS: Fruiting remains under-represented in long-term phenology records, relative to leaf and flower phenology. Herbarium specimens and historical field notes can fill this gap, but selecting and synthesizing these records for modern-day comparison requires an understanding of whether different historical data sources contain similar information, and whether similar, but not equivalent, fruiting metrics are comparable with one another. METHODS: For 67 fleshy-fruited plant species, we compared observations of fruiting phenology made by Henry David Thoreau in Concord, Massachusetts (1850s), with phenology data gathered from herbarium specimens collected across New England (mid-1800s to 2000s). To identify whether fruiting times and the order of fruiting among species are similar between datasets, we compared dates of first, peak and last observed fruiting (recorded by Thoreau), and earliest, mean and latest specimen (collected from herbarium records), as well as fruiting durations. KEY RESULTS: On average, earliest herbarium specimen dates were earlier than first fruiting dates observed by Thoreau; mean specimen dates were similar to Thoreau's peak fruiting dates; latest specimen dates were later than Thoreau's last fruiting dates; and durations of fruiting captured by herbarium specimens were longer than durations of fruiting observed by Thoreau. All metrics of fruiting phenology except duration were significantly, positively correlated within (r: 0.69-0.88) and between (r: 0.59-0.85) datasets. CONCLUSIONS: Strong correlations in fruiting phenology between Thoreau's observations and data from herbaria suggest that field and herbarium methods capture similar broad-scale phenological information, including relative fruiting times among plant species in New England. Differences in the timing of first, last and duration of fruiting suggest that historical datasets collected with different methods, scales and metrics may not be comparable when exact timing is important. Researchers should strongly consider matching methodology when selecting historical records of fruiting phenology for present-day comparisons.


Subject(s)
Fruit , Plant Leaves , Flowers , Massachusetts , Plants
9.
Appl Plant Sci ; 8(4): e11338, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32351799

ABSTRACT

Plant ecologists in the Anthropocene are tasked with documenting, interpreting, and predicting how plants respond to environmental change. Phenology, the timing of seasonal biological events including leaf-out, flowering, fruiting, and leaf senescence, is among the most visible and oft-recorded facets of plant ecology. Climate-driven shifts in plant phenology can alter reproductive success, interspecific competition, and trophic interactions. Low-cost phenology research, including observational records and experimental manipulations, is fundamental to our understanding of both the mechanisms and effects of phenological change in plant populations, species, and communities. Traditions of local-scale botanical phenology observations and data leveraged from written records and natural history collections provide the historical context for recent observations of changing phenologies. New technology facilitates expanding the spatial, taxonomic, and human interest in this research by combining contemporary field observations by researchers and open access community science (e.g., USA National Phenology Network) and available climate data. Established experimental techniques, such as twig cutting and common garden experiments, are low-cost methods for studying the mechanisms and drivers of plant phenology, enabling researchers to observe phenological responses under novel environmental conditions. We discuss the strengths, limitations, potential hidden costs (i.e., volunteer and student labor), and promise of each of these methods for addressing emerging questions in plant phenology research. Applied thoughtfully, economically, and creatively, many low-cost approaches offer novel opportunities to fill gaps in our geographic, taxonomic, and mechanistic understanding of plant phenology worldwide.

10.
Oecologia ; 191(3): 483-491, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31456021

ABSTRACT

Leaf longevity (LL), the amount of time a photosynthetically active leaf remains on a plant, is an important trait of evergreen species, affecting physiological ecology and ecosystem processes. A long LL gives leaves more time to fix carbon but carries higher construction costs, while a short LL allows plants to respond more rapidly to changing environmental conditions. For many evergreen taxa, LL data are not readily available, and it is not known if LL is phylogenetically conserved. To address this gap, we measured LL for 169 temperate and boreal evergreen woody species at the Arnold Arboretum, a botanical garden in Boston, Massachusetts, along with metrics of leaf size and number known to be related to LL. We hypothesized that LL is phylogenetically conserved, and that longer LL is associated with a greater numbers of leaves, smaller leaves, and a colder hardiness zone of the species' native range. We found that average LL ranged from 1.4 years in Rhododendron tomentosum to 10.5 years in Abies cilicia. LL was phylogenetically conserved, with some genera, such as Abies and Picea, exhibiting long LL (> 3 years) and others, such as Ilex and Rhododendron, exhibiting short LL (< 3 years). Leaf length was negatively correlated with LL in conifers, due to differences between Pinus and other genera; however, there was no correlation between LL and number of leaves. This study highlights the considerable variation and phylogenetic pattern in LL among temperate evergreen species, which has implications for carbon budgets and ecosystem models.


Subject(s)
Abies , Pinus , Ecosystem , Phylogeny , Plant Leaves
12.
Am J Bot ; 105(11): 1824-1834, 2018 11.
Article in English | MEDLINE | ID: mdl-30418679

ABSTRACT

PREMISE OF THE STUDY: To improve our understanding of the patterns and drivers of fleshy fruit phenology, we examined the sequence, patterns across years and locations, and drivers of fruiting times at five botanical gardens on three continents. METHODS: We monitored four stages of fruit phenology for 406 temperate, fleshy-fruited, woody plant species in 2014 and 2015. KEY RESULTS: Across all gardens, ripe fruits were present from May to March of the following year, with peak fruiting durations ranging from under 1 week to over 150 days. Species-level first fruiting and onset of peak fruiting dates were strongly associated with one another within sites and were more consistent between years and sites than the end of peak fruiting and last fruiting date. The order of fruiting among species between years and gardens was moderately consistent, and both peak fruiting times and fruiting durations were found to be phylogenetically conserved. CONCLUSIONS: The consistent order of fruiting among species between years and locations indicates species-specific phenological responses to environmental conditions. Wide variation in fruiting times across species and in the duration of peak fruiting reinforces the importance of understanding how plant phenology impacts dispersers and monitoring the health and consistency of these interactions.


Subject(s)
Biological Evolution , Fruit/growth & development , Magnoliopsida/physiology , Phylogeny
13.
Appl Plant Sci ; 6(2): e1022, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29732253

ABSTRACT

PREMISE OF THE STUDY: Herbarium specimens provide a robust record of historical plant phenology (the timing of seasonal events such as flowering or fruiting). However, the difficulty of aggregating phenological data from specimens arises from a lack of standardized scoring methods and definitions for phenological states across the collections community. METHODS AND RESULTS: To address this problem, we report on a consensus reached by an iDigBio working group of curators, researchers, and data standards experts regarding an efficient scoring protocol and a data-sharing protocol for reproductive traits available from herbarium specimens of seed plants. The phenological data sets generated can be shared via Darwin Core Archives using the Extended MeasurementOrFact extension. CONCLUSIONS: Our hope is that curators and others interested in collecting phenological trait data from specimens will use the recommendations presented here in current and future scoring efforts. New tools for scoring specimens are reviewed.

14.
Am J Bot ; 105(1): 31-41, 2018 01.
Article in English | MEDLINE | ID: mdl-29532925

ABSTRACT

PREMISE OF THE STUDY: Patterns of fruiting phenology in temperate ecosystems are poorly understood, despite the ecological importance of fruiting for animal nutrition and seed dispersal. Herbarium specimens represent an under-utilized resource for investigating geographical and climatic factors affecting fruiting times within species, patterns in fruiting times among species, and differences between native and non-native invasive species. METHODS: We examined over 15,000 herbarium specimens, collected and housed across New England, and found 3159 specimens with ripe fruits, collected from 1849-2013. We examined patterns in fruiting phenology among 37 native and 18 invasive woody plant species common to New England. We compared fruiting dates between native and invasive species, and analyzed how fruiting phenology varies with temperature, space, and time. KEY RESULTS: Spring temperature and year explained a small but significant amount of the variation in fruiting dates. Accounting for the moderate phylogenetic signal in fruiting phenology, invasive species fruited 26 days later on average than native species, with significantly greater standard deviations. CONCLUSIONS: Herbarium specimens can be used to detect patterns in fruiting times among species. However, the amount of intraspecific variation in fruiting times explained by temporal, geographic, and climatic predictors is small, due to a combination of low temporal resolution of fruiting specimens and the protracted nature of fruiting. Later fruiting times in invasive species, combined with delays in autumn bird migrations in New England, may increase the likelihood that migratory birds will consume and disperse invasive seeds in New England later into the year.


Subject(s)
Fruit/growth & development , Introduced Species , Magnoliopsida/growth & development , Animal Nutritional Physiological Phenomena , Animals , Birds/physiology , Feeding Behavior , New England , Seasons , Seed Dispersal , Species Specificity
15.
Trends Ecol Evol ; 32(7): 531-546, 2017 07.
Article in English | MEDLINE | ID: mdl-28465044

ABSTRACT

The timing of phenological events, such as leaf-out and flowering, strongly influence plant success and their study is vital to understanding how plants will respond to climate change. Phenological research, however, is often limited by the temporal, geographic, or phylogenetic scope of available data. Hundreds of millions of plant specimens in herbaria worldwide offer a potential solution to this problem, especially as digitization efforts drastically improve access to collections. Herbarium specimens represent snapshots of phenological events and have been reliably used to characterize phenological responses to climate. We review the current state of herbarium-based phenological research, identify potential biases and limitations in the collection, digitization, and interpretation of specimen data, and discuss future opportunities for phenological investigations using herbarium specimens.


Subject(s)
Climate Change , Phylogeny , Flowers , Plants , Seasons , Temperature
16.
New Phytol ; 213(4): 1567-1568, 2017 03.
Article in English | MEDLINE | ID: mdl-28164336

Subject(s)
Climate , Poaceae , Reproduction
17.
Ann Bot ; 116(6): 875-88, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25968905

ABSTRACT

BACKGROUND AND AIMS: Many individual studies have shown that the timing of leaf senescence in boreal and temperate deciduous forests in the northern hemisphere is influenced by rising temperatures, but there is limited consensus on the magnitude, direction and spatial extent of this relationship. METHODS: A meta-analysis was conducted of published studies from the peer-reviewed literature that reported autumn senescence dates for deciduous trees in the northern hemisphere, encompassing 64 publications with observations ranging from 1931 to 2010. KEY RESULTS: Among the meteorological measurements examined, October temperatures were the strongest predictors of date of senescence, followed by cooling degree-days, latitude, photoperiod and, lastly, total monthly precipitation, although the strength of the relationships differed between high- and low-latitude sites. Autumn leaf senescence has been significantly more delayed at low (25° to 49°N) than high (50° to 70°N) latitudes across the northern hemisphere, with senescence across high-latitude sites more sensitive to the effects of photoperiod and low-latitude sites more sensitive to the effects of temperature. Delays in leaf senescence over time were stronger in North America compared with Europe and Asia. CONCLUSIONS: The results indicate that leaf senescence has been delayed over time and in response to temperature, although low-latitude sites show significantly stronger delays in senescence over time than high-latitude sites. While temperature alone may be a reasonable predictor of the date of leaf senescence when examining a broad suite of sites, it is important to consider that temperature-induced changes in senescence at high-latitude sites are likely to be constrained by the influence of photoperiod. Ecosystem-level differences in the mechanisms that control the timing of leaf senescence may affect both plant community interactions and ecosystem carbon storage as global temperatures increase over the next century.


Subject(s)
Climate Change , Plant Leaves/physiology , Trees/physiology , Cellular Senescence , Ecosystem , Forests , Geography , Linear Models , Phenotype , Photoperiod , Plant Leaves/radiation effects , Rain , Seasons , Temperature , Time Factors , Trees/radiation effects
18.
Ann Bot ; 116(6): 889-97, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25851135

ABSTRACT

BACKGROUND AND AIMS: Climate change is advancing the leaf-out times of many plant species and mostly extending the growing season in temperate ecosystems. Laboratory experiments using twig cuttings from woody plant species present an affordable, easily replicated approach to investigate the relative importance of factors such as winter chilling, photoperiod, spring warming and frost tolerance on the leafing-out times of plant communities. This Viewpoint article demonstrates how the results of these experiments deepen our understanding beyond what is possible via analyses of remote sensing and field observation data, and can be used to improve climate change forecasts of shifts in phenology, ecosystem processes and ecological interactions. SCOPE: The twig method involves cutting dormant twigs from trees, shrubs and vines on a single date or at intervals over the course of the winter and early spring, placing them in containers of water in controlled environments, and regularly recording leaf-out, flowering or other phenomena. Prior to or following leaf-out or flowering, twigs may be assigned to treatment groups for experiments involving temperature, photoperiod, frost, humidity and more. Recent studies using these methods have shown that winter chilling requirements and spring warming strongly affect leaf-out and flowering times of temperate trees and shrubs, whereas photoperiod requirements are less important than previously thought for most species. Invasive plant species have weaker winter chilling requirements than native species in temperate ecosystems, and species that leaf-out early in the season have greater frost tolerance than later leafing species. CONCLUSIONS: This methodology could be extended to investigate additional drivers of leaf-out phenology, leaf senescence in the autumn, and other phenomena, and could be a useful tool for education and outreach. Additional ecosystems, such as boreal, southern hemisphere and sub-tropical forests, could also be investigated using dormant twigs to determine the drivers of leaf-out times and how these ecosystems will be affected by climate change.


Subject(s)
Climate Change , Plant Leaves/physiology , Trees/physiology , Ecosystem , Forests , Introduced Species , Phenotype , Photoperiod , Plant Leaves/radiation effects , Seasons , Temperature , Time Factors , Trees/radiation effects
19.
Ann Bot ; 116(6): 865-73, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25808654

ABSTRACT

BACKGROUND AND AIMS: Autumn leaf senescence marks the end of the growing season in temperate ecosystems. Its timing influences a number of ecosystem processes, including carbon, water and nutrient cycling. Climate change is altering leaf senescence phenology and, as those changes continue, it will affect individual woody plants, species and ecosystems. In contrast to spring leaf out times, however, leaf senescence times remain relatively understudied. Variation in the phenology of leaf senescence among species and locations is still poorly understood. METHODS: Leaf senescence phenology of 1360 deciduous plant species at six temperate botanical gardens in Asia, North America and Europe was recorded in 2012 and 2013. This large data set was used to explore ecological and phylogenetic factors associated with variation in leaf senescence. KEY RESULTS: Leaf senescence dates among species varied by 3 months on average across the six locations. Plant species tended to undergo leaf senescence in the same order in the autumns of both years at each location, but the order of senescence was only weakly correlated across sites. Leaf senescence times were not related to spring leaf out times, were not evolutionarily conserved and were only minimally influenced by growth habit, wood anatomy and percentage colour change or leaf drop. These weak patterns of leaf senescence timing contrast with much stronger leaf out patterns from a previous study. CONCLUSIONS: The results suggest that, in contrast to the broader temperature effects that determine leaf out times, leaf senescence times are probably determined by a larger or different suite of local environmental effects, including temperature, soil moisture, frost and wind. Determining the importance of these factors for a wide range of species represents the next challenge for understanding how climate change is affecting the end of the growing season and associated ecosystem processes.


Subject(s)
Climate Change , Plant Leaves/physiology , Trees/physiology , Asia , Carbon/metabolism , Cellular Senescence , Ecosystem , Europe , North America , Phenotype , Phylogeny , Plant Leaves/genetics , Seasons , Species Specificity , Temperature , Time Factors , Trees/genetics
20.
Trends Ecol Evol ; 30(3): 169-76, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25662784

ABSTRACT

Autumn remains a relatively neglected season in climate change research in temperate and arctic ecosystems. This neglect occurs despite the importance of autumn events, including leaf senescence, fruit ripening, bird and insect migration, and induction of hibernation and diapause. Changes in autumn phenology alter the reproductive capacity of individuals, exacerbate invasions, allow pathogen amplification and higher disease-transmission rates, reshuffle natural enemy-prey dynamics, shift the ecological dynamics among interacting species, and affect the net productivity of ecosystems. We synthesize some of our existing understanding of autumn phenology and identify five areas ripe for future climate change research. We provide recommendations to address common pitfalls in autumnal research as well as to support the conservation and management of vulnerable ecosystems and taxa.


Subject(s)
Climate Change , Ecosystem , Seasons , Animal Migration , Animals , Carbon Cycle , Introduced Species , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...