Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 9(8)2020 Aug 16.
Article in English | MEDLINE | ID: mdl-32824316

ABSTRACT

Grafting is routinely implemented in modern agriculture to manage soilborne pathogens such as fungi, oomycetes, bacteria, and viruses of solanaceous crops in a sustainable and environmentally friendly approach. Some rootstock/scion combinations use specific genetic resistance mechanisms to impact also some foliar and airborne pathogens, including arthropod or contact-transmitted viruses. These approaches resulted in poor efficiency in the management of plant viruses with superior virulence such as the strains of tomato spotted wilt virus breaking the Sw5 resistance, strains of cucumber mosaic virus carrying necrogenic satellite RNAs, and necrogenic strains of potato virus Y. Three different studies from our lab documented that suitable levels of resistance/tolerance can be obtained by grafting commercial tomato varieties onto the tomato ecotype Manduria (Ma) rescued in the framework of an Apulian (southern Italy) regional program on biodiversity. Here we review the main approaches, methods, and results of the three case studies and propose some mechanisms leading to the tolerance/resistance observed in susceptible tomato varieties grafted onto Ma as well as in self-grafted plants. The proposed mechanisms include virus movement in plants, RNA interference, genes involved in graft wound response, resilience, and tolerance to virus infection.

2.
Sci Rep ; 10(1): 2538, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32054920

ABSTRACT

Grafting of commercial tomato varieties and hybrids on the tomato ecotype Manduria resulted in high levels of tolerance to the infection of Sw5 resistance-breaking strains of tomato spotted wilt virus and of severe cucumber mosaic virus strains supporting hypervirulent satellite RNAs that co-determine stunting and necrotic phenotypes in tomato. To decipher the basis of such tolerance, here we used a RNAseq analysis to study the transcriptome profiles of the Manduria ecotype and of the susceptible variety UC82, and of their graft combinations, exposed or not to infection of the potato virus Y recombinant strain PVYC-to. The analysis identified graft- and virus-responsive mRNAs differentially expressed in UC82 and Manduria, which led to an overall suitable level of tolerance to viral infection confirmed by the appearance of a recovery phenotype in Manduria and in all graft combinations. The transcriptome analysis suggested that graft wounding and viral infection had diverging effects on tomato transcriptome and that the Manduria ecotype was less responsive than the UC82 to both graft wounding and potyviral infection. We propose that the differential response to the two types of stress could account for the tolerance to viral infection observed in the Manduria ecotype as well as in the susceptible tomato variety UC82 self-grafted or grafted on the Manduria ecotype.


Subject(s)
Plant Diseases/genetics , Tospovirus/genetics , Transcriptome/genetics , Virus Diseases/genetics , Cucumovirus/genetics , Cucumovirus/pathogenicity , Gene Expression Profiling , Solanum lycopersicum/genetics , Solanum lycopersicum/virology , Phenotype , Plant Diseases/virology , Potyvirus/genetics , Potyvirus/pathogenicity , Tospovirus/pathogenicity , Virus Diseases/virology
3.
J Gen Virol ; 100(8): 1206-1207, 2019 08.
Article in English | MEDLINE | ID: mdl-31192783

ABSTRACT

Bromoviridae is a family of plant viruses with tri-segmented, positive-sense, single-stranded RNA genomes of about 8 kb in total. Genomic RNAs are packaged in separate virions that may also contain subgenomic, defective or satellite RNAs. Virions are variable in morphology (spherical or bacilliform) and are transmitted between hosts mechanically, in/on the pollen and non-persistently by insect vectors. Members of the family are responsible for major disease epidemics in fruit, vegetable and fodder crops such as tomato, cucurbits, bananas, fruit trees and alfalfa. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Bromoviridae, which is available at www.ictv.global/report/bromoviridae.


Subject(s)
Bromoviridae/classification , Plant Diseases/virology , Animals , Bromoviridae/genetics , Bromoviridae/isolation & purification , Bromoviridae/ultrastructure , Genome, Viral , Insect Vectors/physiology , Insect Vectors/virology , Plant Viruses/classification , Plant Viruses/genetics , Plant Viruses/isolation & purification
4.
Sci Rep ; 9(1): 2657, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30804453

ABSTRACT

RNA interference (RNAi) is a sequence identity-dependent RNA degradation mechanism conserved in eukaryotic organisms. One of the roles of RNAi is as a defense system against viral infections, which has been demonstrated in filamentous fungi but not in oomycetes. We investigated the virus-RNAi interplay in the oomycete Phytophthora infestans using a crucifer-infecting strain of the plant virus tobacco mosaic virus (TMVcr) and its derivative TMVcr-Δ122 that is mutated in the sequence of the p122 replicase subunit and thus inhibited in RNA suppression activity. In this study we provide evidence that replication of TMVcr-Δ122 but not of TMVcr was impaired in P. infestans as well as in tobacco plants used as positive control. The interference was associated with induction of high transcription of dicer-like genes Pidcl2 and NtDCL2 and of RNA-dependent-RNA-polymerase Pirdr1 and NtRDR1 in P. infestans and tobacco, respectively. These high transcription levels suggest an RNAi-based response that TMVcr-Δ122 mutant was not able to suppress. Taken altogether, results of this study demonstrated that an antiviral silencing activity operates also in P. infestans and that a plant virus could be a simple and feasible tool for functional studies also in oomycetes.


Subject(s)
Host-Pathogen Interactions , Phytophthora infestans/genetics , Phytophthora infestans/virology , RNA Interference , Tobacco Mosaic Virus/physiology , Gene Expression Regulation , Gene Expression Regulation, Plant , Gene Silencing , Genes, Reporter , Host-Pathogen Interactions/genetics , Phenotype , Plant Diseases/genetics , Plant Diseases/virology , Nicotiana/genetics , Nicotiana/virology
5.
Arch Virol ; 162(6): 1805-1809, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28247096

ABSTRACT

Next-generation sequencing (NGS) allowed the assembly of the complete RNA-1 and RNA-2 sequences of a grapevine isolate of artichoke Italian latent virus (AILV). RNA-1 and RNA-2 are 7,338 and 4,630 nucleotides in length excluding the 3' terminal poly(A) tail, and encode two putative polyproteins of 255.8 kDa (p1) and 149.6 kDa (p2), respectively. All conserved motifs and predicted cleavage sites, typical for nepovirus polyproteins, were found in p1 and p2. AILV p1 and p2 share high amino acid identity with their homologues in beet ringspot virus (p1, 81% and p2, 71%), tomato black ring virus (p1, 79% and p2, 63%), grapevine Anatolian ringspot virus (p1, 65% and p2, 63%), and grapevine chrome mosaic virus (p1, 60% and p2, 54%), and to a lesser extent with other grapevine nepoviruses of subgroup A and C. Phylogenetic and sequence analyses, all confirmed the strict relationship of AILV with members classified in subgroup B of genus Nepovirus.


Subject(s)
Nepovirus/genetics , Amino Acid Sequence , Cynara scolymus/virology , High-Throughput Nucleotide Sequencing , Italy , Nepovirus/classification , Nepovirus/isolation & purification , Phylogeny , Plant Diseases/virology , Polyproteins/genetics , Sequence Analysis, DNA
6.
Plant Sci ; 252: 176-192, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27717453

ABSTRACT

Metagenomic surveys and data from next generation sequencing revealed that mixed infections among plant viruses are probably a rule rather than an exception in natural pathosystems. The documented cases may range from synergism to antagonism, which may depend from the spatiotemporal order of arrival of the viruses on the host and upon the host itself. In synergistic interactions, the measurable differences in replication, phenotypic and cytopathological changes, cellular tropism, within host movement, and transmission rate of one of the two viruses or both are increased. Conversely, a decrease in replication, or inhibition of one or more of the above functions by one virus against the other, leads to an antagonistic interaction. Viruses may interact directly and by transcomplementation of defective functions or indirectly, through responses mediated by the host like the defense mechanism based on RNA silencing. Outcomes of these interactions can be applied to the risk assessment of transgenic crops expressing viral proteins, or cross-protected crops for the identification of potential hazards. Prior to experimental evidence, mathematical models may help in forecasting challenges deriving from the great variety of pathways of synergistic and antagonistic interactions. Actually, it seems that such predictions do not receive sufficient credit in the framework of agriculture.


Subject(s)
Host-Pathogen Interactions , Microbial Interactions , Plant Viruses/physiology , Plants/virology , Computational Biology , Disease Resistance/genetics , Metagenomics , Plant Viruses/genetics , Plants/genetics
7.
PLoS One ; 10(10): e0141319, 2015.
Article in English | MEDLINE | ID: mdl-26496695

ABSTRACT

RNA silencing controls endogenous gene expression and drives defensive reactions against invasive nucleic acids like viruses. In plants, it has been demonstrated that RNA silencing can be transmitted through grafting between scions and silenced rootstocks to attenuate virus and viroid accumulation in the scions. This has been obtained mostly using transgenic plants, which may be a drawback in current agriculture. In the present study, we examined the dynamics of infection of a resistance-breaking strain of Tomato spotted wilt virus (RB-TSWV) through the graft between an old Apulian (southern Italy) tomato variety, denoted Sl-Ma, used as a rootstock and commercial tomato varieties used as scions. In tests with non-grafted plants, Sl-Ma showed resistance to the RB-TSWV infection as viral RNA accumulated at low levels and plants recovered from disease symptoms by 21 days post inoculation. The resistance trait was transmitted to the otherwise highly susceptible tomato genotypes grafted onto Sl-Ma. The results from the analysis of small RNAs hallmark genes involved in RNA silencing and virus-induced gene silencing suggest that RNA silencing is involved in the resistance showed by Sl-Ma against RB-TSWV and in scions grafted on this rootstock. The results from self-grafted susceptible tomato varieties suggest also that RNA silencing is enhanced by the graft itself. We can foresee interesting practical implications of the approach described in this paper.


Subject(s)
Plant Diseases/virology , Solanum lycopersicum/virology , Tospovirus/physiology , Chromosome Mapping , Disease Resistance , Gene Expression Regulation, Plant , Genome, Plant , Genotype , Solanum lycopersicum/genetics , Plants, Genetically Modified , RNA Interference , RNA Transport , RNA, Plant/metabolism , RNA, Small Untranslated/metabolism
8.
Mob Genet Elements ; 4: e29782, 2014.
Article in English | MEDLINE | ID: mdl-25057444

ABSTRACT

Functional genomics in plants has been facilitated greatly by the use of plant viruses to carry segments of host genes that can then promote the silencing of the RNAs expressed from the corresponding host genes; a process called virus-induced gene silencing (VIGS). The silencing of genes in filamentous fungi is either technically more problematic or labor-intensive, especially if transgenic plants need to be generated first. However, a recent paper from our team demonstrated that a plant virus could infect three related fungal species, as well as express a reporter gene ectopically, and also silence the correspondingly expressed reporter transgene. The gene expression and RNA silencing of the reporter gene was maintained for six passages in culture and also persisted in plants infected by the virus-infected fungus. Here, we consider how the virus can enter and migrate within the fungus, whether the virus can move back and forth between the fungus and the plant and the ramifications of this, the prospects for VIGS being used to silence fungal endogenes and possible biotechnological or therapeutic applications of using plant viruses for expressing foreign proteins in fungi or silencing fungal endogenes.

9.
PLoS One ; 9(6): e99446, 2014.
Article in English | MEDLINE | ID: mdl-24911029

ABSTRACT

Nepoviral infections induce recovery in fully expanded leaves but persist in shoot apical meristem (SAM) by a largely unknown mechanism. The dynamics of infection of a grapevine isolate of Artichoke Italian latent virus (AILV-V, genus Nepovirus) in tobacco plants, including colonization of SAM, symptom induction and subsequent recovery of mature leaves from symptoms, were characterized. AILV-V moved from the inoculated leaves systemically and invaded SAM in 7 days post-inoculation (dpi), remaining detectable in SAM at least up to 40 dpi. The new top leaves recovered from viral symptoms earliest at 21 dpi. Accumulation of viral RNA to a threshold level was required to trigger the overexpression of RDR6 and DCL4. Consequently, accumulation of viral RNA decreased in the systemically infected leaves, reaching the lowest concentration in the 3rd and 4th leaves at 23 dpi, which was concomitant with recovery of the younger, upper leaves from disease symptoms. No evidence of virus replication was found in the recovered leaves, but they contained infectious virus particles and were protected against re-inoculation with AILV-V. In this study we also showed that AILV-V did not suppress initiation or maintenance of RNA silencing in transgenic plants, but was able to interfere with the cell-to-cell movement of the RNA silencing signal. Our results suggest that AILV-V entrance in SAM and activation of RNA silencing may be distinct processes since the latter is triggered in fully expanded leaves by the accumulation of viral RNA above a threshold level rather than by virus entrance in SAM.


Subject(s)
Nicotiana/virology , Plant Diseases/virology , Plant Viruses/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Silencing , Host-Pathogen Interactions/genetics , Life Cycle Stages , Meristem/virology , Phenotype , Plant Diseases/genetics , Plant Leaves/virology , RNA Interference , RNA, Viral/genetics , Nicotiana/genetics , Transcriptome , Virus Replication
10.
Proc Natl Acad Sci U S A ; 111(11): 4291-6, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24594602

ABSTRACT

RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including phytopathogenic fungi. In such fungi, RNAi has been induced by expressing hairpin RNAs delivered through plasmids, sequences integrated in fungal or plant genomes, or by RNAi generated in planta by a plant virus infection. All these approaches have some drawbacks ranging from instability of hairpin constructs in fungal cells to difficulties in preparing and handling transgenic plants to silence homologous sequences in fungi grown on these plants. Here we show that RNAi can be expressed in the phytopathogenic fungus Colletotrichum acutatum (strain C71) by virus-induced gene silencing (VIGS) without a plant intermediate, but by using the direct infection of a recombinant virus vector based on the plant virus, tobacco mosaic virus (TMV). We provide evidence that a wild-type isolate of TMV is able to enter C71 cells grown in liquid medium, replicate, and persist therein. With a similar approach, a recombinant TMV vector carrying a gene for the ectopic expression of the green fluorescent protein (GFP) induced the stable silencing of the GFP in the C. acutatum transformant line 10 expressing GFP derived from C71. The TMV-based vector also enabled C. acutatum to transiently express exogenous GFP up to six subcultures and for at least 2 mo after infection, without the need to develop transformation technology. With these characteristics, we anticipate this approach will find wider application as a tool in functional genomics of filamentous fungi.


Subject(s)
Colletotrichum/genetics , Gene Expression Regulation, Fungal/genetics , Genomics/methods , RNA Interference , Genetic Vectors , Microscopy, Electron, Transmission , RNA, Small Interfering/genetics , Tobacco Mosaic Virus , Transfection/methods
11.
Adv Virus Res ; 84: 289-324, 2012.
Article in English | MEDLINE | ID: mdl-22682171

ABSTRACT

Most of the 25 viruses found in globe artichoke (Cynara scolymus L.) and cardoon (Cynara cardunculus L.) were recorded from Europe and the Mediterranean basin, where they decrease both the productivity and the quality of the crop. Although, sometimes, these viruses are agents of diseases of different severity, most often their infections are symptomless. These conditions have contributed to spread virus-infected material since farmers multiply traditional artichoke types vegetatively with no effective selection of virus-free plants. This review reports the main properties of these viruses and the techniques used for their detection and identification. ELISA kits are commercially available for most of the viruses addressed in this review but have seldom been used for their detection in artichoke. Conversely, nucleic acid-based diagnostic reagents, some of which are commercially available, have successfully been employed to identify some viruses in artichoke sap. Control measures mainly use virus-free stocks for new plantations. A combined procedure of meristem-tip culture and thermotherapy proved useful for producing virus-free regenerants of the reflowering southern Italian cultivar Brindisino, which kept earliness and typical heads shape.


Subject(s)
Cynara scolymus/virology , Plant Diseases/virology , Plant Viruses/pathogenicity , Mediterranean Region , Plant Viruses/isolation & purification
12.
Mol Plant Microbe Interact ; 23(11): 1514-24, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20923355

ABSTRACT

Mixed infection with the SON41 strain of Potato virus Y (PVY-SON41) in tomato increased accumulation of RNAs of strains Fny and LS of Cucumber mosaic virus (CMV-Fny and CMV-LS, respectively) and enhanced disease symptoms. By contrast, replication of PVY-SON41 was downregulated by CMV-Fny and this was due to the CMV-Fny 2b protein. The CMV-FnyΔ2b mutant was unable to systemically invade the tomato plant because its movement was blocked at the bundle sheath of the phloem. The function needed for invading the phloem was complemented by PVY-SON41 in plants grown at 22°C whereas this complementation was not necessary in plants grown at 15°C. Mutations in the 2b protein coding sequence of CMV-Fny as well as inhibition of translation of the 2a/2b overlapping region of the 2a protein lessened both the accumulation of viral RNAs and the severity of symptoms. Both of these functions were complemented by PVY-SON41. Infection of CMV-Fny supporting replication of the Tfn-satellite RNA reduced the accumulation of CMV RNA and suppressed symptom expression also in plants mixed-infected with PVY-SON41. The interaction between CMV and PVY-SON41 in tomato exhibited different features from that documented in other hosts. The results of this work are relevant from an ecological and epidemiological perspective due to the frequency of natural mixed infection of CMV and PVY in tomato.


Subject(s)
Cucumovirus/physiology , Plant Diseases/virology , Potyvirus/physiology , Solanum lycopersicum/virology , Cucumovirus/genetics , Mutation , Phloem/genetics , Plant Leaves/virology , Protoplasts/virology , Temperature , Virus Replication/physiology
13.
Mol Plant Pathol ; 11(6): 805-16, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21029324

ABSTRACT

The quantification of messenger RNA expression levels by real-time reverse-transcription polymerase chain reaction requires the availability of reference genes that are stably expressed regardless of the experimental conditions under study. We examined the expression variations of a set of eight candidate reference genes in tomato leaf and root tissues subjected to the infection of five taxonomically and molecularly different plant viruses and a viroid, inducing diverse pathogenic effects on inoculated plants. Parallel analyses by three commonly used dedicated algorithms, geNorm, NormFinder and BestKeeper, showed that different viral infections and tissues of origin influenced, to some extent, the expression levels of these genes. However, all algorithms showed high levels of stability for glyceraldehyde 3-phosphate dehydrogenase and ubiquitin, indicated as the most suitable endogenous transcripts for normalization in both tissue types. Actin and uridylate kinase were also stably expressed throughout the infected tissues, whereas cyclophilin showed tissue-specific expression stability only in root samples. By contrast, two widely employed reference genes, 18S ribosomal RNA and elongation factor 1α, demonstrated highly variable expression levels that should discourage their use for normalization. In addition, expression level analysis of ascorbate peroxidase and superoxide dismutase showed the modulation of the two genes in virus-infected tomato leaves and roots. The relative quantification of the two genes varied according to the reference genes selected, thus highlighting the importance of the choice of the correct normalization method in such experiments.


Subject(s)
Plant Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Solanum lycopersicum/genetics , Actins/genetics , Ascorbate Peroxidases , Gene Expression Profiling , Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)/genetics , Nucleoside-Phosphate Kinase/genetics , Peroxidases/genetics , RNA, Ribosomal, 18S/genetics , Superoxide Dismutase/genetics , Ubiquitin/genetics
14.
Mol Plant Microbe Interact ; 22(10): 1239-49, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19737097

ABSTRACT

Viral infections interfere with the microRNA (miRNA)-mediated regulation of gene expression, determining developmental defects. In tomato leaves, the accumulation levels of six miRNA species and their target transcripts corresponding to transcription factors with roles in plant development and leaf morphogenesis and two genes involved in the short RNA processing, DCL1 and AGO1, were significantly enhanced upon infection with the severe strain Cucumber mosaic virus (CMV)-Fny, while that of AGO4 was reduced. In plants harboring the infection of the mild strain CMV-LS, the effects on miRNA pathway were reduced, although AGO1, DCL1, and NAC1 also were shown to overaccumulate during infections exhibiting a mild phenotype. The use of the recombinant strain CMV-Fny(LS2b), in which the 3'-terminal region of CMV-Fny RNA 2, including the 2b coding sequence, was replaced with the corresponding region of CMV-LS RNA 2, provided evidence that the exchanged region was implicated in the perturbation of miRNA metabolism. In tomato plants infected with CMV-Fny supporting the ameliorative satellite (sat)RNA variant Tfn-satRNA, the symptomless phenotype correlated, with the exception of NAC1 upregulation, with the absence of effects on mitochondrial RNA and miRNA expression. Some of the aspects of miRNA pathway perturbation described were peculiar to CMV-tomato interactions and involved in the etiology of the disease phenotype elicited in this host.


Subject(s)
Cucumovirus/pathogenicity , MicroRNAs/genetics , RNA, Plant/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/virology , Base Sequence , Chromosome Mapping , Cucumovirus/genetics , DNA Primers/genetics , Gene Expression , Gene Expression Regulation, Plant , Genes, Plant , Host-Pathogen Interactions/genetics , Solanum lycopersicum/metabolism , MicroRNAs/metabolism , Plant Diseases/genetics , Plant Diseases/virology , RNA, Plant/metabolism
15.
Mol Plant Microbe Interact ; 17(1): 98-108, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14714873

ABSTRACT

Transgenic tomato (Lycopersicon esculentum Mill. cv. UC82) plants expressing a benign variant of Cucumber mosaic virus satellite RNA (CMV Tfn-satRNA) were generated. The transformed plants did not produce symptoms when challenged with a satRNA-free strain of CMV (CMV-FL). The same plant lines initially were susceptible to necrosis elicited by a CMV strain supporting a necrogenic variant of satRNA (CMV-77), but a phenotype of total recovery from the necrosis was observed in the newly developing leaves. The features of the observed resistance were analyzed and are consistent with two different mechanisms of resistance. In transgenic plants inoculated with CMV-FL strain, the symptomless phenotype was correlated to the down-regulation of CMV by Tfn-satRNA, amplified from the transgene transcripts, as the first resistance mechanism. On the other hand, the delayed resistance to CMV-77 in transgenic tomato lines was mediated by a degradation process that targets satRNAs in a sequence-specific manner. Evidence is provided for a correlation between a reduced accumulation level of transgenic messenger Tfn-satRNA, the accumulation of small (approximately 23 nucleotides) RNAs with sequence homology to satRNAs, the progressively reduced accumulation of 77-satRNA in infected tissues, and the transition in infected plants from diseased to healthy. Thus, events leading to the degradation of satRNA sequences indicate a role for RNA silencing as the second mechanism determining resistance of transgenic tomato lines.


Subject(s)
Cucumber Mosaic Virus Satellite/genetics , Cucumovirus/genetics , Plant Diseases/virology , Solanum lycopersicum/genetics , Base Sequence , Cucumber Mosaic Virus Satellite/metabolism , Cucumovirus/pathogenicity , Gene Expression Regulation, Plant , Immunity, Innate/genetics , Solanum lycopersicum/virology , Molecular Sequence Data , Phenotype , Plant Diseases/genetics , Plants, Genetically Modified , RNA Interference
16.
Plant Dis ; 86(1): 54-60, 2002 Jan.
Article in English | MEDLINE | ID: mdl-30822999

ABSTRACT

The strain L47 of Aureobasidium pullulans is an effective biocontrol agent of postharvest diseases. When applied in the field before harvesting it requires a specific monitoring method to evaluate colonization and dispersal in the environment. The randomly amplified polymorphic DNA technique (RAPD) was used for a preliminary screening of A. pullulans genetic variability among 205 isolates. This approach allowed the selection of a 1.3-kb fragment (L4) present solely in isolates L47 and 633. In Southern blots, a digoxigenin (DIG)-labeled L4 amplicon specifically recognized the corresponding fragment present in the polymorphic pattern of L47 and 633. The L4 fragment was cloned, sequenced, and used to design two sequence-characterized amplification region (SCAR) primers and a 242-bp riboprobe. Both the SCAR primers and the 242-bp DIG-labeled riboprobe were highly specific for L47. In classical polymerase chain reaction (PCR), with a series of 10-fold dilutions of L47 DNA, the limit of detection was 20 pg/µl. The Ap13 primer was also modified to obtain a Scorpion primer for detecting a 150-bp amplicon by fluorescence emitted from a fluorophore through a self-probing PCR assay. This assay specifically recognized the target sequence of L47 strain over a number of other A. pullulans isolates in field-treated grape berry washings. The limit of detection was 105 cells per ml, i.e. 10 times higher than the limit of the CFU method. The method is also proposed as a way to demonstrate the ability of L47 strain to penetrate the epidermis of sweet cherry fruits and to track it in the mesocarp.

SELECTION OF CITATIONS
SEARCH DETAIL
...