Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Pathol ; 76(8): 548-554, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35256486

ABSTRACT

AIMS: FOCUS4 was a phase II/III umbrella trial, recruiting patients with advanced or metastatic colorectal cancer, between 2014 and 2020. Molecular profiling of patients' formalin-fixed, paraffin-embedded tumour blocks was undertaken at two centralised biomarker laboratories (Leeds and Cardiff), and the results fed directly to the Medical Research Council Clinical Trials Unit, and used for subsequent randomisation. Here the laboratories discuss their experiences. METHODS: Following successful tumour content assessment, blocks were sectioned for DNA extraction and immunohistochemistry (IHC). Pyrosequencing was initially used to determine tumour mutation status (KRAS, NRAS, BRAF and PIK3CA), then from 2018 onwards, next-generation sequencing was employed to allow the inclusion of TP53. Protein expression of MLH1, MSH2, MSH6, PMS2 and pTEN was determined by IHC. An interlaboratory comparison programme was initiated, allowing sample exchanges, to ensure continued assay robustness. RESULTS: 1291 tumour samples were successfully analysed. Assay failure rates were very low; 1.9%-3.3% for DNA sequencing and 0.9%-1.3% for IHC. Concordance rates of >98% were seen for the interlaboratory comparisons, where a result was obtained by both laboratories. CONCLUSIONS: Practical and logistical problems were identified, including poor sample quality and difficulties with sample anonymisation. The often last-minute receipt of a sample for testing and a lack of integration with National Health Service mutation analysis services were challenging. The laboratories benefitted from both pretrial validations and interlaboratory comparisons, resulting in robust assay development and provided confidence during the implementation of new sequencing technologies. We conclude that our centralised approach to biomarker testing in FOCUS4 was effective and successful.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Laboratories , State Medicine , Proto-Oncogene Proteins B-raf/genetics , Mutation , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
2.
Histopathology ; 79(5): 690-699, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33872400

ABSTRACT

AIMS: Screening all patients newly diagnosed with colorectal cancer (CRC) for possible Lynch syndrome (LS) has been recommended in the United Kingdom since the National Institute for Health and Care Excellence (NICE) released new diagnostics guidance in February 2017. We sought to validate the NICE screening pathway through a prospective regional programme throughout a 5.2-million population during a 2-year period. METHODS AND RESULTS: Pathology departments at 14 hospital trusts in the Yorkshire and Humber region of the United Kingdom were invited to refer material from patients with newly diagnosed CRC aged 50 years or over between 1 April 2017 and 31 March 2019 for LS screening. Testing consisted of immunohistochemistry for MLH1, PMS2, MSH2 and MSH6 followed by BRAF mutation analysis ± MLH1 promoter methylation testing in cases showing MLH1 loss. A total of 3141 individual specimens were submitted for testing from 12 departments consisting of 3061 unique tumours and 2791 prospectively acquired patients with CRC. Defective mismatch repair (dMMR) was observed in 15% of cases. In cases showing MLH1 loss, 76% contained a detectable BRAF mutation and, of the remainder, 77% showed MLH1 promoter hypermethylation. Of the patients included in the final analysis, 81 (2.9%) had an indication for germline testing. CONCLUSION: LS screening using the NICE diagnostics guidance pathway is deliverable at scale identifying significant numbers of patients with dMMR. This information is used to refer patients to regional clinical genetics services in addition to informing treatment pathways including the use of adjuvant/neoadjuvant chemotherapy and immunotherapy.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Early Detection of Cancer/methods , Genetic Testing/methods , Adult , Aged , Biomarkers, Tumor/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Methylation , DNA Mismatch Repair/genetics , Female , Genetic Predisposition to Disease , Humans , Immunohistochemistry , Male , Middle Aged , MutL Protein Homolog 1/genetics , Mutation , Prospective Studies , Proto-Oncogene Proteins B-raf/genetics , United Kingdom
3.
Clin Cancer Res ; 27(8): 2246-2254, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33658300

ABSTRACT

PURPOSE: There is potential for fecal microbiome profiling to improve colorectal cancer screening. This has been demonstrated by research studies, but it has not been quantified at scale using samples collected and processed routinely by a national screening program. EXPERIMENTAL DESIGN: Between 2016 and 2019, the largest of the NHS Bowel Cancer Screening Programme hubs prospectively collected processed guaiac fecal occult blood test (gFOBT) samples with subsequent colonoscopy outcomes: blood-negative [n = 491 (22%)]; colorectal cancer [n = 430 (19%)]; adenoma [n = 665 (30%)]; colonoscopy-normal [n = 300 (13%)]; nonneoplastic [n = 366 (16%)]. Samples were transported and stored at room temperature. DNA underwent 16S rRNA gene V4 amplicon sequencing. Taxonomic profiling was performed to provide features for classification via random forests (RF). RESULTS: Samples provided 16S amplicon-based microbial profiles, which confirmed previously described colorectal cancer-microbiome associations. Microbiome-based RF models showed potential as a first-tier screen, distinguishing colorectal cancer or neoplasm (colorectal cancer or adenoma) from blood-negative with AUC 0.86 (0.82-0.89) and AUC 0.78 (0.74-0.82), respectively. Microbiome-based models also showed potential as a second-tier screen, distinguishing from among gFOBT blood-positive samples, colorectal cancer or neoplasm from colonoscopy-normal with AUC 0.79 (0.74-0.83) and AUC 0.73 (0.68-0.77), respectively. Models remained robust when restricted to 15 taxa, and performed similarly during external validation with metagenomic datasets. CONCLUSIONS: Microbiome features can be assessed using gFOBT samples collected and processed routinely by a national colorectal cancer screening program to improve accuracy as a first- or second-tier screen. The models required as few as 15 taxa, raising the potential of an inexpensive qPCR test. This could reduce the number of colonoscopies in countries that use fecal occult blood test screening.


Subject(s)
Colorectal Neoplasms/diagnosis , Early Detection of Cancer/methods , Gastrointestinal Microbiome , Aged , Aged, 80 and over , Colonoscopy , Colorectal Neoplasms/microbiology , DNA, Bacterial/isolation & purification , Early Detection of Cancer/statistics & numerical data , England , Feces/microbiology , Female , Humans , Male , Middle Aged , Occult Blood , Prospective Studies , RNA, Ribosomal, 16S/genetics , State Medicine
SELECTION OF CITATIONS
SEARCH DETAIL
...