Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 11(7)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37515035

ABSTRACT

Generalized Modules for Membrane Antigens (GMMA) are outer membrane vesicles derived from Gram-negative bacteria that can be used to design affordable subunit vaccines. GMMA have been observed to induce a potent humoral immune response in preclinical and clinical studies. In addition, in preclinical studies, it has been found that GMMA can be exploited as optimal antigen carriers for both protein and saccharide antigens, as they are able to promote the enhancement of the antigen-specific humoral immune response when the antigen is overexpressed or chemically conjugated to GMMA. Here we investigated the mechanism of this GMMA carrier effect by immunizing mice and using factor H binding protein and GMMA of Neisseria meningitidis B as an antigen-GMMA model. We confirmed that the antigen displayed on the GMMA surface increased the antigen-specific IgG production and, above all, the antibody functionality measured by the serum bactericidal activity. We found that the enhancement of the bactericidal capacity induced by GMMA carrying the antigen on the surface was associated with the increase in antibody affinity to the antigen, and with the switching toward IgG subclasses with more bactericidal potential. Thus, we conclude that the potent carrier effect of GMMA is due to their ability to promote a better quality of humoral immunity.

2.
J Control Release ; 342: 388-399, 2022 02.
Article in English | MEDLINE | ID: mdl-34896446

ABSTRACT

The efficacy of RNA-based vaccines has been recently demonstrated, leading to the use of mRNA-based COVID-19 vaccines. The application of self-amplifying mRNA within these formulations may offer further enhancement to these vaccines, as self-amplifying mRNA replicons enable longer expression kinetics and more potent immune responses compared to non-amplifying mRNAs. To investigate the impact of administration route on RNA-vaccine potency, we investigated the immunogenicity of a self-amplifying mRNA encoding the rabies virus glycoprotein encapsulated in different nanoparticle platforms (solid lipid nanoparticles (SLNs), polymeric nanoparticles (PNPs) and lipid nanoparticles (LNPs)). These were administered via three different routes: intramuscular, intradermal and intranasal. Our studies in a mouse model show that the immunogenicity of our 4 different saRNA vaccine formulations after intramuscular or intradermal administration was initially comparable; however, ionizable LNPs gave higher long-term IgG responses. The clearance of all 4 of the nanoparticle formulations from the intramuscular or intradermal administration site was similar. In contrast, immune responses generated after intranasal was low and coupled with rapid clearance for the administration site, irrespective of the formulation. These results demonstrate that both the administration route and delivery system format dictate self-amplifying RNA vaccine efficacy.


Subject(s)
COVID-19 , Nanoparticles , Animals , COVID-19 Vaccines , Humans , Liposomes , Mice , RNA, Messenger , SARS-CoV-2 , Vaccine Potency , Vaccines, Synthetic , mRNA Vaccines
3.
J Control Release ; 325: 370-379, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32619745

ABSTRACT

Self-amplifying RNA (SAM) represents a versatile tool that can be used to develop potent vaccines, potentially able to elicit strong antigen-specific humoral and cellular-mediated immune responses to virtually any infectious disease. To protect the SAM from degradation and achieve efficient delivery, lipid nanoparticles (LNPs), particularly those based on ionizable amino-lipids, are commonly adopted. Herein, we compared commonly available cationic lipids, which have been broadly used in clinical investigations, as an alternative to ionizable lipids. To this end, a SAM vaccine encoding the rabies virus glycoprotein (RVG) was used. The cationic lipids investigated included 3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol), dimethyldioctadecylammonium (DDA), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP), 1,2-stearoyl-3-trimethylammonium-propane (DSTAP) and N-(4-carboxybenzyl)-N,N-dimethyl-2,3-bis(oleoyloxy)propan-1-aminium (DOBAQ). Whilst all cationic LNP (cLNP) formulations promoted high association with cells in vitro, those formulations containing the fusogenic lipid 1,2-dioleoyl-sn-3-phosphoethanolamine (DOPE) in combination with DOTAP or DDA were the most efficient at inducing antigen expression. Therefore, DOTAP and DDA formulations were selected for further in vivo studies and were compared to benchmark ionizable LNPs (iLNPs). Biodistribution studies revealed that DDA-cLNPs remained longer at the injection site compared to DOTAP-cLNPs and iLNPs when administered intramuscularly in mice. Both the cLNP formulations and the iLNPs induced strong humoral and cellular-mediated immune responses in mice that were not significantly different at a 1.5 µg SAM dose. In summary, cLNPs based on DOTAP and DDA are an efficient alternative to iLNPs to deliver SAM vaccines.


Subject(s)
Nanoparticles , Vaccines , Animals , Lipids , Liposomes , Mice , Quaternary Ammonium Compounds , RNA, Messenger , Tissue Distribution
4.
Vaccines (Basel) ; 8(2)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397231

ABSTRACT

messenger RNA (mRNA)-based vaccines combine the positive attributes of both live-attenuated and subunit vaccines. In order for these to be applied for clinical use, they require to be formulated with delivery systems. However, there are limited in vivo studies which compare different delivery platforms. Therefore, we have compared four different cationic platforms: (1) liposomes, (2) solid lipid nanoparticles (SLNs), (3) polymeric nanoparticles (NPs) and (4) emulsions, to deliver a self-amplifying mRNA (SAM) vaccine. All formulations contained either the non-ionizable cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or dimethyldioctadecylammonium bromide (DDA) and they were characterized in terms of physico-chemical attributes, in vitro transfection efficiency and in vivo vaccine potency. Our results showed that SAM encapsulating DOTAP polymeric nanoparticles, DOTAP liposomes and DDA liposomes induced the highest antigen expression in vitro and, from these, DOTAP polymeric nanoparticles were the most potent in triggering humoral and cellular immunity among candidates in vivo.

5.
ACS Infect Dis ; 5(9): 1546-1558, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31290323

ABSTRACT

Mannosylation of Lipid Nanoparticles (LNP) can potentially enhance uptake by Antigen Presenting Cells, which are highly abundant in dermal tissues, to improve the potency of Self Amplifying mRNA (SAM) vaccines in comparison to the established unmodified LNP delivery system. In the current studies, we evaluated mannosylated LNP (MLNP), which were obtained by incorporation of a stable Mannose-cholesterol amine conjugate, for the delivery of an influenza (hemagglutinin) encoded SAM vaccine in mice, by both intramuscular and intradermal routes of administration. SAM MLNP exhibited in vitro enhanced uptake in comparison to unglycosylated LNP from bone marrow-derived dendritic cells, and in vivo more rapid onset of the antibody response, independent of the route. The increased binding antibody levels also translated into higher functional hemagglutinin inhibition titers, particularly following intradermal administration. T cell assay on splenocytes from immunized mice also showed an increase in antigen specific CD8+ T responses, following intradermal administration of MLNP SAM vaccines. Induction of enhanced antigen specific CD4+ T cells, correlating with higher IgG2a antibody responses, was also observed. Hence, the present work illustrates the benefit of mannosylation of LNPs to achieve a faster immune response with SAM vaccines and these observations could contribute to the development of novel skin delivery systems for SAM vaccines.


Subject(s)
Cholesterol/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/administration & dosage , Mannose/chemistry , Orthomyxoviridae Infections/prevention & control , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/virology , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/virology , Female , Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Immunoglobulin G/metabolism , Influenza Vaccines/chemical synthesis , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Injections, Intradermal , Mice , Nanoparticles , Orthomyxoviridae Infections/immunology , Particle Size , RNA, Messenger/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/immunology
6.
Vaccine ; 35(32): 3930-3937, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28645718

ABSTRACT

Intradermal vaccine delivery is a promising alternative to the conventional intramuscular route. The skin layer is immunologically supported by a densely network of antigen presenting cells, while the skeletal muscle is loaded with a relatively sparse population of APCs. Nevertheless, the vaccine to be suitable for intradermal delivery needs a new formulation to facilitate either smaller injection volumes or the introduction into new delivery devises as micro-needles. This study presents a proof of concept for intradermal delivery of the MenC-CRM197 glycoconjugate vaccine using a mouse model. Tangential flow filtration allowed obtaining a 20-fold concentrated vaccine formulation suitable for intradermal injection. Importantly the intradermal delivery of non-adjuvanted MenC glycoconjugate vaccine showed a quicker on-set and superiority in terms of immunogenicity compared to intramuscular administration of the respective vaccine and comparable immunogenicity to the aluminum adjuvanted vaccine formulation given intramuscular. Subsequently, the use of adjuvants allowed to further increase the immunogenicity and to modulate the quality of the immune response towards a more beneficial Th1 response. As adjuvants two Toll like receptor agonists (TLR4a and TLR7a), a mutant of the heat-labile enterotoxin from Escherichia coli (LT), a α-GalactosylCeramide analogue and an oil in water emulsion were investigated in order to target skin-resident antigen-presenting cells. This approach has the potential to be extended to other meningococcal serogroups, representing a promising strategy for the development of dermally administered multivalent glycoconjugate vaccines.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Bacterial Toxins/administration & dosage , Enterotoxins/administration & dosage , Escherichia coli Proteins/administration & dosage , Galactosylceramides/administration & dosage , Meningococcal Vaccines/administration & dosage , Meningococcal Vaccines/immunology , Oils/administration & dosage , Animals , Female , Injections, Intradermal , Mice, Inbred BALB C
7.
Eur J Pharm Biopharm ; 107: 110-9, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27388628

ABSTRACT

Conjugation of a small molecule immunopotentiator to antigens has been proposed to deliver the ligand to the receptor, localize its action and minimize systemic inflammation. However, the effect of conjugation of Toll like receptor 7 agonists (TLR7a) on the immunogenicity of carbohydrate-based vaccines is unknown. In this study we synthesized an anti-Neisseria meningitidis serogroup C (MenC) glycoconjugate vaccine composed of MenC oligosaccharide antigens covalently linked to the carrier protein CRM197, to which a TLR7a was in turn conjugated. This vaccine was able to activate in vitro the TLR7 comparably to the unconjugated ligand. The magnitude and the quality of the immune response against MenC capsular polysaccharide were evaluated in mice, comparing the MenC-CRM-TLR7a construct to a MenC-CRM197 vaccine, prepared through the same conjugation chemistry and co-administered with the unconjugated TLR7a. A commercially licensed anti-MenC glycoconjugate was used as further control to determine the influence of the coupling approach and the level of carbohydrate incorporation on the anti-MenC immune response. The possible additive effect of co-administration with Alum hydroxide (AlumOH) was also examined. The bactericidal titers against N. meningitidis were in agreement with the elicited anti-carbohydrate IgGs, and unequivocally showed that TLR7a conjugation to CRM197 enhanced the anti-MenC immune response. TLR7a conjugation induced a shift to a Th1 type response, as assessed by the increased IgG2a subclass production, both in the absence and in the presence of AlumOH. The increased immune response was clearly present only in the absence of AlumOH and was less pronounced than the co-administration of a licensed glycoconjugate with a standard dose of TLR7a-phosphonate adsorbed on the inorganic salt. The amount of MenC saccharide that was covalently linked to CRM197 after previous CRM197-TLR7a conjugation resulted in lower responses than achieved with conventional MenC-CRM197 glycoconjugation in the absence of TLR7a. As result, the benefit of the adjuvant conjugation in terms of anti-MenC immune response was jeopardized by the lower saccharide/protein ratio obtained in the MenC-CRM-TLR7a conjugate. While adsorption on AlumOH offers more flexibility in the administered dose of TLR7a, conjugation of the small molecule immunopotentiator could be particularly suited for vaccination routes such as skin delivery, where insoluble aluminum salts cannot be used because of their reactogenicity in this site.


Subject(s)
Adjuvants, Immunologic/pharmacology , Bacterial Proteins/pharmacology , Glycoconjugates/chemistry , Meningococcal Vaccines/chemistry , Neisseria meningitidis, Serogroup C/immunology , Toll-Like Receptor 7/agonists , Vaccines, Conjugate/chemistry , Adjuvants, Immunologic/chemistry , Animals , Bacterial Proteins/chemistry , Carbohydrate Sequence , Electrophoresis, Polyacrylamide Gel , Female , Mice
8.
Vaccine ; 33(25): 2930-8, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-25930118

ABSTRACT

Microstructure patches provide an opportunity for simple, effective, and safe vaccine administration, while achieving the desired immune response. We have evaluated the MicroCor transdermal system for cell culture-derived trivalent influenza vaccine administration. Influenza monovalent purified bulk vaccines (monobulks) (H1N1, H3N2, B) were concentrated by tangential flow filtration, lyophilized, and formulated with biocompatible excipients to form the microstructure array dissolvable tips. Standard single radial immunodiffusion (SRID) determined that the influenza antigens retained potency through the formulation and microstructure array fabrication processes. Array stability was evaluated for storage in both refrigerated and room temperature conditions. Microstructure mechanical strength was confirmed by application to excised pig skin, resulting in successful skin penetration and tip dissolution within 5 min of microstructure insertion. Guinea pigs immunized with influenza vaccine-loaded microstructures had hemagglutinin inhibition (HI) and IgG titers comparable to those obtained by intramuscular injection. After two immunizations, serum HI titers for all immunized groups were greater than 40 (>4-fold higher than the untreated group). These data demonstrate the feasibility for the development of skin delivery technologies that are compatible with cell culture-derived influenza vaccines.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/immunology , Influenza Vaccines/immunology , Administration, Cutaneous , Animals , Antibodies, Viral/blood , Antigens, Viral/blood , Antigens, Viral/immunology , Cells, Cultured , Female , Guinea Pigs , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunodiffusion , Immunoglobulin G/blood , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Orthomyxoviridae Infections/prevention & control , Vaccination
9.
Mol Pharm ; 12(5): 1662-72, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25867449

ABSTRACT

The potential benefits of skin delivery of vaccines derive from the presence of a densely connected network of antigen presenting cells in the skin layer, most significantly represented by Langerhans cells and dermal dendritic cells. Targeting these cells by adjuvant conjugated to an antigen should result in enhanced immunogenicity of a vaccine. Since one of the most widely used adjuvants is an insoluble salt of aluminum (aluminum hydroxide) that cannot be used for skin delivery due to reactogenicity, we focused our attention on agonists of receptors present on skin dendritic cells, including the Dectin-1 receptor. ß-(1-3)-glucans, which are the most abundant components of the fungal surface, are known to activate the innate immune response by interaction with the C-type lectin-like Dectin-1 receptor. In this work we identified by rational design a well-defined synthetic ß-(1-3)-glucan hexasaccharide as a Dectin-1 agonist and chemically conjugated it to the genetically detoxified diphtheria toxin (CRM197) protein antigen, as a means to increase the binding to Dectin-1 receptor and to target to skin dendritic cells. We demonstrated that the in vitro activation of the receptor was significantly impacted by the presentation of the glucan on the protein carrier. In vivo results in mice showed that the conjugation of the synthetic ß-(1-3)-glucan when delivered intradermally resulted in higher antibody titers in comparison to intramuscular (i.m.) immunization and was not different from subcutaneous (s.c.) delivery. These findings suggest that weak receptor binders can be turned into more potent agonists by the multivalent presentation of many ligands covalently conjugated to the protein core. Moreover, this approach is particularly valuable to increase the immunogenicity of antigens administered via skin delivery.


Subject(s)
Antigens/chemistry , Lectins, C-Type/chemistry , beta-Glucans/chemistry , Adjuvants, Immunologic/chemistry , Animals , Cell Line , Enzyme-Linked Immunosorbent Assay , Female , Mice , Mice, Inbred BALB C , beta-Glucans/agonists
10.
Vaccine ; 32(20): 2382-8, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24434044

ABSTRACT

Influenza is a vaccine-preventable disease that remains a major health problem world-wide. Needle and syringe are still the primary delivery devices, and injection of liquid vaccine into the muscle is still the primary route of immunization. Vaccines could be more convenient and effective if they were delivered by the mucosal route. Elicitation of systemic and mucosal innate and adaptive immune responses, such as pathogen neutralizing antibodies (including mucosal IgA at the site of pathogen entry) and CD4(+) T-helper cells (especially the Th17 subset), have a critical role in vaccine-mediated protection. In the current study, a sublingual subunit influenza vaccine formulated with or without mucosal adjuvant was evaluated for systemic and mucosal immunogenicity and compared to intranasal and intramuscular vaccination. Sublingual administration of adjuvanted influenza vaccine elicited comparable antibody titers to those elicited by intramuscular immunization with conventional influenza vaccine. Furthermore, influenza-specific Th17 cells or neutralizing mucosal IgA were detected exclusively after mucosal immunization.


Subject(s)
Administration, Sublingual , Influenza Vaccines/administration & dosage , Orthomyxoviridae Infections/prevention & control , Th17 Cells/immunology , Vaccination/methods , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Hemagglutination Inhibition Tests , Humans , Immunity, Mucosal , Immunoglobulin A/immunology , Influenza A Virus, H1N1 Subtype , Injections, Intramuscular , Mice , Mice, Inbred BALB C , Vaccines, Subunit/administration & dosage
11.
J Pharm Sci ; 102(3): 866-75, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23303584

ABSTRACT

Vaccine antigens are usually available only as dilute solutions, which are difficult to formulate into various novel delivery systems, which often require highly concentrated antigens. To address this problem, we have utilized tangential flow filtration (TFF), a simple and scalable process to prepare highly concentrated vaccine antigens. Here, we describe the optimization of TFF to concentrate hemagglutinin (HA) of egg-derived influenza antigens, from 2008 to 2009 seasonal vaccine, to concentrations up to 28 mg/mL. Concentrated antigen was evaluated by single radial immunodiffusion and reversed-phase high-performance liquid chromatographic analysis for the estimation of the HA content and a range of assays including size exclusion, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and bicinchoninic acid assay for protein characterization. In addition, the concentrated antigens retained their immunogenicity, confirmed by the induction of immune responses comparable to that of unprocessed antigen in a mouse model. The liquid concentrates were stable for up to 4 weeks, which could allow subsequent formulation into novel delivery technologies. Hence, we have used influenza HA to demonstrate that the fast, robust, and scalable approach of TFF can be used to concentrate antigens for use in novel delivery approaches. Moreover, the concentration process could be applicable for a variety of antigens and a wide range of novel vaccine delivery applications.


Subject(s)
Antigens, Viral/administration & dosage , Antigens, Viral/isolation & purification , Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification , Influenza Vaccines/administration & dosage , Influenza Vaccines/isolation & purification , Orthomyxoviridae Infections/prevention & control , Animals , Antibody Formation , Antigens, Viral/immunology , Chromatography, Gel , Drug Delivery Systems , Electrophoresis, Polyacrylamide Gel , Female , Filtration/instrumentation , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology
12.
Vaccine ; 29(37): 6262-8, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21723355

ABSTRACT

Emulsions have been used to boost immunogenicity of antigens since the discovery of complete Freunds adjuvant. Optimization to reduce reactogenicity of emulsion adjuvants lead to the development of oil in water emulsions based on squalene. MF59 is an oil-in-water emulsion that is a component of an approved influenza product in Europe. Currently MF59 is manufactured from squalene derived from an animal source. Recently a high purity plant-derived squalene source has become available at an appropriate purity for a vaccine adjuvant. The purpose of this study was to evaluate and compare animal-derived squalene and plant-derived squalene for equivalency. Nanoemulsions were prepared and analyzed for size and viscosity prepared from each source. The two emulsions were administered in two separate animal studies, one focusing on Neisseria meningitidis B, and one focusing on influenza. Readouts were ELISA titers for each antigen and serum bactericidal activity for N. meningitidis B, and hemagglutinin inhibition for influenza to see the functionality of the antibodies produced. Results indicate that there are no differences between the antibodies elicited after immunization from an emulsion made with oil derived from either an animal or plant-source.


Subject(s)
Adjuvants, Immunologic/chemistry , Influenza Vaccines/immunology , Squalene/immunology , Adjuvants, Immunologic/pharmacology , Animals , Emulsions/pharmacology , Enzyme-Linked Immunosorbent Assay , Female , Immunization/methods , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/immunology , Mice , Mice, Inbred BALB C , Neisseria meningitidis, Serogroup B/immunology , Plant Oils , Polysorbates/pharmacology , Serum Bactericidal Test , Squalene/pharmacology
13.
Proc Natl Acad Sci U S A ; 106(41): 17481-6, 2009 Oct 13.
Article in English | MEDLINE | ID: mdl-19805031

ABSTRACT

Group B Streptococcus (GBS) causes serious infection in neonates and is an important target of vaccine development. Zwitterionic polysaccharides (ZPS), obtained through chemical introduction of positive charges into anionic polysaccharides (PS) from GBS, have the ability to activate human and mouse antigen presenting cells (APCs) through toll-like receptor 2 (TLR2). To generate a polysaccharide vaccine with antigen (Ag) and adjuvant properties in one molecule, we have conjugated ZPS with a carrier protein. ZPS-glycoconjugates induce higher T-cell and Ab responses to carrier and PS, respectively, compared to control PS-glycoconjugates made with the native polysaccharide form. The increased immunogenicity of ZPS-conjugates correlates with their ability to activate dendritic cells (DCs). Moreover, protection of mothers or neonate offspring from lethal GBS challenge is better when mothers are immunized with ZPS-conjugates compared to immunization with PS-conjugates. In TLR2 knockout mice, ZPS-conjugates lose both their increased immunogenicity and protective effect after vaccination. When ZPS are coadministered as adjuvants with unconjugated tetanus toxoid (TT), they have the ability to increase the TT-specific antibody titer. In conclusion, glycoconjugates containing ZPS are potent vaccines. They target Ag to TLR2-expressing APCs and activate these APCs, leading to better T-cell priming and ultimately to higher protective Ab titers. Thus, rational chemical design can generate potent PS-adjuvants with wide application, including glycoconjugates and coadministration with unrelated protein Ags.


Subject(s)
Polysaccharides/chemistry , Toll-Like Receptor 2/immunology , Vaccines, Conjugate/chemistry , Animals , Bacterial Vaccines/therapeutic use , Humans , Infant, Newborn , Mice , Polysaccharides/immunology , Streptococcal Infections/immunology
14.
Immunopharmacol Immunotoxicol ; 30(4): 761-70, 2008.
Article in English | MEDLINE | ID: mdl-18686103

ABSTRACT

Bacterial capsular polysaccharides (PS) which naturally contain zwitterionic charge motifs (ZPS) possess specific immunostimulatory activity, leading to direct activation of antigen-presenting cells (APCs) through Toll-like receptor 2 (TLR2) and of T cells in co-culture systems. When administered intraperitoneally, ZPS and bacteria expressing them are involved in the induction or regulation of T-cell dependent inflammatory processes such as intra-abdominal abscess formation. To generate vaccine candidates with antigen and adjuvant properties in one molecule we have chemically introduced zwitterionic motifs into naturally anionic PS and find that the resulting ZPS are TLR2 agonists, able to activate human and mouse APCs. Since T-regulatory cells and other T-cell subsets express TLR2, and TLR2 engagement modifies functionality and activation state of these cells, we speculate that most effects induced by natural and chemically derived ZPS may be explained by their TLR2 agonist properties, presumably through the combined action on TLR2-expressing APCs and T cells.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/physiology , Antigens, T-Independent/physiology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/physiology , Toll-Like Receptor 2/agonists , Toll-Like Receptor 2/chemistry , Animals , Cells, Cultured , Coculture Techniques , Humans , Static Electricity , Toll-Like Receptor 2/physiology
15.
J Immunol ; 179(12): 8208-15, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-18056364

ABSTRACT

It was shown previously that bacterial polysaccharides (PS), which naturally contain both positive and negative charges, are able to activate T cells and APCs. However, the vast majority of bacterial PS are anionic and do not have these properties. In this study, we show that chemical introduction of positive charges into naturally anionic bacterial PS confers to the resulting zwitterionic PS (ZPS) the ability to activate pure human monocytes, monocyte-derived dendritic cells, and mouse bone marrow-derived dendritic cells, as do natural bacterial ZPS. Cells are induced to up-regulate MHC class II and costimulatory molecules and to produce cytokines. In mixed monocyte-T cell cocultures, ZPS induce MHC II-dependent T cell proliferation and up-regulation of activation markers. These stimulatory qualities of ZPS disappear when the positive charge is chemically removed from the molecules and thus the zwitterionic motif is destroyed. The ability of natural and chemically derived ZPS to activate APCs can be blocked by anti-TLR2 mAbs, and TLR2 transfectants show reporter gene transcription upon incubation with ZPS. In conclusion, the generation of a zwitterionic motif in bacterial PS confers the ability to activate both APCs and T cells. This finding has important implications for the design of novel polysaccharide vaccines.


Subject(s)
Antigen-Presenting Cells/drug effects , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Toll-Like Receptor 2/agonists , Antigen-Presenting Cells/immunology , Cell Line , Humans , Polysaccharides, Bacterial/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...