Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(24): 9016-9025, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38903222

ABSTRACT

Substitution of one metal catalyst for another is not as straightforward as simply justifying this change based on the availability and/or cost of the metals. Methodologies to properly assess options for reaction design, including multiple factors like a metal's availability, cost, or environmental indicators have not advanced at the pace needed, leaving decisions to be made along these lines more challenging. Isolated indicators can lead to conclusions being made in too hasty a fashion. Therefore, an extensive life cycle-like assessment was performed documenting that the commonly held view that methods using earth-abundant metals (and in this case study, Ni) are inherently green replacements for methods using palladium in cross-coupling reactions, and Suzuki-Miyaura couplings, in particular, is an incomplete analysis of the entire picture. This notion can be misleading, and unfortunately derives mainly from the standpoint of price, and to some degree, relative natural abundance associated with the impact of mining of each metal. A more accurate picture emerges when several additional reaction parameters involved in the compared couplings are considered. The analysis points to the major impact that use of organic solvents has in these couplings, while the metals themselves actually play subordinate roles in terms of CO2-release into the environment and hence, the overall carbon footprint (i.e., climate change). The conclusion is that a far more detailed analysis is required than that typically being utilized.

2.
Angew Chem Int Ed Engl ; 63(30): e202405833, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38748747

ABSTRACT

Nitrogen heterocycles are commonly found in bioactive natural products and drugs. However, the biocatalytic tools for nitrogen heterocycle synthesis are limited. Herein, we report the discovery of vanillyl alcohol oxidases (VAOs) as efficient biocatalysts for the one-pot synthesis of 2-aryl thiazolines from various 4-hydroxybenzaldehydes and aminothiols. The wild-type biocatalyst features a broad scope of 4-hydroxybenzaldehydes. Though the scope of aminothiols is limited, it could be improved via semi-rational protein engineering, generating a variant to produce previously inaccessible cysteine-derived bioactive 2-aryl thiazolines using the wild-type VAO. Benefiting from the derivatizable functional groups in the enzymatic products, we further chemically modified these products to expand the chemical space, offering a new chemoenzymatic strategy for the green and efficient synthesis of structurally diverse 2-aryl-thiazoline derivatives to prompt their use in drug discovery and catalysis.


Subject(s)
Thiazoles , Thiazoles/chemistry , Thiazoles/chemical synthesis , Benzaldehydes/chemistry , Biocatalysis , Molecular Structure , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/chemistry , Benzyl Alcohols
3.
J Org Chem ; 89(7): 4261-4282, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38508870

ABSTRACT

Small molecule therapeutics represent the majority of the FDA-approved drugs. Yet, many attractive targets are poorly tractable by small molecules, generating a need for new therapeutic modalities. Due to their biocompatibility profile and structural versatility, peptide-based therapeutics are a possible solution. Additionally, in the past two decades, advances in peptide design, delivery, formulation, and devices have occurred, making therapeutic peptides an attractive modality. However, peptide manufacturing is often limited to solid-phase peptide synthesis (SPPS), liquid phase peptide synthesis (LPPS), and to a lesser extent hybrid SPPS/LPPS, with SPPS emerging as a predominant platform technology for peptide synthesis. SPPS involves the use of excess solvents and reagents which negatively impact the environment, thus highlighting the need for newer technologies to reduce the environmental footprint. Herein, fourteen American Chemical Society Green Chemistry Institute Pharmaceutical Roundtable (ACS GCIPR) member companies with peptide-based therapeutics in their portfolio have compiled Process Mass Intensity (PMI) metrics to help inform the sustainability efforts in peptide synthesis. This includes PMI assessment on 40 synthetic peptide processes at various development stages in pharma, classified according to the development phase. This is the most comprehensive assessment of synthetic peptide environmental metrics to date. The synthetic peptide manufacturing process was divided into stages (synthesis, purification, isolation) to determine their respective PMI. On average, solid-phase peptide synthesis (SPPS) (PMI ≈ 13,000) does not compare favorably with other modalities such as small molecules (PMI median 168-308) and biopharmaceuticals (PMI ≈ 8300). Thus, the high PMI for peptide synthesis warrants more environmentally friendly processes in peptide manufacturing.


Subject(s)
Peptides , Solid-Phase Synthesis Techniques , Peptides/chemistry , Chemistry Techniques, Synthetic , Solvents
4.
Chem Commun (Camb) ; 60(17): 2349-2352, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38284323

ABSTRACT

A sustainable C(sp2)-C(sp3) cross-electrophile coupling was developed between readily available 5-bromophthalide and 1-benzyl-4-iodopiperidine under micellar conditions, leading to a key intermediate of one of our development compounds. Copper was found to play a crucial role as a co-catalyst in this dual catalysis system. The chemistry and process were successfully demonstrated in a kilo scale to deliver sufficient drug substance to the clinical campaigns. This is the first reported scale-up of such a challenging cross-electrophilic coupling that uses an aqueous medium, and not undesirable reprotoxic polar aprotic solvents (e.g. DMF, DMAc, and NMP).


Subject(s)
Micelles , Water , Solvents , Catalysis
5.
ChemSusChem ; 17(6): e202301220, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-37975728

ABSTRACT

The development of mechanochemistry is considerably growing. Benign by design, this technology complies with several principles of green chemistry, contributing to the achievement of the United Nations Sustainable Development Goals (UN SDGs) and the European Green Deal objectives. Herein, we report the use of mechanochemical processes in batch to prepare kilogram-scale of the Active Pharmaceutical Ingredient (API): Ibuprofen-Nicotinamide (rac-IBP:NCT) co-crystal in an industrial eccentric vibration mill. This scenario shows a sustainable approach to the industrial up-scaling of pharmaceutical co-crystals by a solvent-free mechanochemical process in batch. The quantitative assessment of the greenness of the mechanochemical process against the Twelve Principles of Green Chemistry was performed using the DOZN 2.0 Green Chemistry Evaluator.


Subject(s)
Chemistry, Pharmaceutical , Ibuprofen , Solvents/chemistry , Ibuprofen/chemistry , Pharmaceutical Preparations
6.
Int J Pharm ; 650: 123692, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38081561

ABSTRACT

Surface-induced aggregation of protein therapeutics is opposed by employing surfactants, which are ubiquitously used in drug product development, with polysorbates being the gold standard. Since poloxamer 188 is currently the only generally accepted polysorbate alternative, but cannot be ubiquitously applied, there is a strong need to develop surfactant alternatives for protein biologics that would complement and possibly overcome known drawbacks of existing surfactants. Yet, a severe lack of structure-function relationship knowledge complicates the development of new surfactants. Herein, we perform a systematic analysis of the structure-function relationship of three classes of novel alternative surfactants. Firstly, the mode of action is thoroughly characterized through tensiometry, calorimetry and MD simulations. Secondly, the safety profiles are evaluated through cell-based in vitro assays. Ultimately, we could conclude that the alternative surfactants investigated possess a mode of action and safety profile comparable to polysorbates. Moreover, the biophysical patterns elucidated here can be exploited to precisely tune the features of future surfactant designs.


Subject(s)
Biological Products , Pulmonary Surfactants , Surface-Active Agents/chemistry , Polysorbates/chemistry , Poloxamer/chemistry , Structure-Activity Relationship
7.
Chimia (Aarau) ; 77(3): 159-160, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-38047821

ABSTRACT

Industrial representatives from the Swiss chemistry ecosystem met to formulate unmet needs in the field of sustainability and share the content of the exchange. The aim is to spark inspiration and trigger ambitious and pre-competitive projects collectively at the interface of the academic and industrial worlds, with the hope to profoundly change the current practices and provide an answer to some of the most urgent environmental challenges.


Subject(s)
Chemical Industry , Universities , Switzerland , Humans
8.
Chimia (Aarau) ; 77(12): 813, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38131403
9.
Chem Sci ; 14(43): 12049-12055, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37969587

ABSTRACT

The unexpected potential of micellar medium to achieve challenging ß-selective direct arylation of (oligo)thiophenes is reported. Thanks to the use of a water/surfactant solution in combination with natural feedstock-derived undecanoic acid as an additive, this high-yielding C-H coupling could be performed regioselectively at room temperature.

10.
Molecules ; 28(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37764228

ABSTRACT

Biocatalysis can be applied in aqueous media and in different non-aqueous solutions (non-conventional media). Water is a safe solvent, yet many synthesis-wise interesting substrates cannot be dissolved in aqueous solutions, and thus low concentrations are often applied. Conversely, non-conventional media may enable higher substrate loadings but at the cost of using (fossil-based) organic solvents. This paper determines the CO2 production-expressed as kg CO2·kg product-1-of generic biotransformations in water and non-conventional media, assessing both the upstream and the downstream. The key to reaching a diminished environmental footprint is the type of wastewater treatment to be implemented. If the used chemicals enable a conventional (mild) wastewater treatment, the production of CO2 is limited. If other (pre)treatments for the wastewater are needed to eliminate hazardous chemicals and solvents, higher environmental impacts can be expected (based on CO2 production). Water media for biocatalysis are more sustainable during the upstream unit-the biocatalytic step-than non-conventional systems. However, processes with aqueous media often need to incorporate extractive solvents during the downstream processing. Both strategies result in comparable CO2 production if extractive solvents are recycled at least 1-2 times. Under these conditions, a generic industrial biotransformation at 100 g L-1 loading would produce 15-25 kg CO2·kg product-1 regardless of the applied media.


Subject(s)
Carbon Dioxide , Fossils , Biocatalysis , Solvents , Hazardous Substances
11.
ACS Appl Mater Interfaces ; 15(29): 34540-34553, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37450418

ABSTRACT

Therapeutically relevant proteins naturally adsorb to interfaces, causing aggregation which in turn potentially leads to numerous adverse consequences such as loss of activity or unwanted immunogenic reactions. Surfactants are ubiquitously used in biotherapeutics drug development to oppose interfacial stress, yet, the choice of the surfactant is extremely limited: to date, only polysorbates (PS20/80) and poloxamer 188 are used in commercial products. However, both surfactant families suffer from severe degradation and impurities of the raw material, which frequently increases the risk of particle generation, chemical protein degradation, and potential adverse immune reactions. Herein, we assessed a total of 40 suitable alternative surfactant candidates and subsequently performed a selection through a three-gate screening process employing four protein modalities encompassing six different formulations. The screening is based on short-term agitation-induced aggregation studies coupled to particle analysis and surface tension characterization, followed by long-term quiescence stability studies connected to protein purity measurements and particle analysis. The study concludes by assessing the surfactant's chemical and enzymatic degradation propensity. The candidates emerging from the screening are de novo α-tocopherol-derivatives named VEDG-2.2 and VEDS, produced ad hoc for this study. They display protein stabilization potential comparable or better than polysorbates together with an increased resistance to chemical and enzymatic degradation, thus representing valuable alternative surfactants for biotherapeutics.


Subject(s)
Biological Products , Pulmonary Surfactants , Humans , Surface-Active Agents/chemistry , Polysorbates/chemistry , Poloxamer/chemistry , Proteins/chemistry
12.
Angew Chem Int Ed Engl ; 62(39): e202307139, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37279182

ABSTRACT

Herein, we developed the recyclable ligand-free iridium (Ir)-hydride based Ir0 nanoparticles (NPs) for the first regioselective partial hydrogenation of PV -substituted naphthalenes. Both the isolated and in situ generated NPs are catalytically active. A control nuclear magnetic resonance (NMR) study revealed the presence of metal-surface-bound hydrides, most likely formed from Ir0 species. A control NMR study confirmed that hexafluoroisopropanol as a solvent was accountable for substrate activation via hydrogen bonding. High-resolution transmission electron microscopy of the catalyst supports the formation of ultrasmall NPs, and X-ray photoelectron spectroscopy confirmed the dominance of Ir0 in the NPs. The catalytic activity of NPs is broad as showcased by highly regioselective aromatic ring reduction in various phosphine oxides or phosphonates. The study also showcased a novel pathway toward preparing bis(diphenylphosphino)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (H8 -BINAP) and its derivatives without losing enantioselectivity during catalytic events.

13.
J Am Chem Soc ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36753354

ABSTRACT

Savie is a biodegradable surfactant derived from vitamin E and polysarcosine (PSar) developed for use in organic synthesis in recyclable water. This includes homogeneous catalysis (including examples employing only ppm levels of catalyst), heterogeneous catalysis, and biocatalytic transformations, including a multistep chemoenzymatic sequence. Use of Savie frequently leads to significantly higher yields than do conventional surfactants, while obviating the need for waste-generating organic solvents.

14.
ACS Omega ; 8(1): 1154-1167, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643536

ABSTRACT

N-nitrosamines are widespread cancerogenic compounds in human environment, including water, tobacco products, food, and medicinal products. Their presence in pharmaceuticals has recently led to several recalls of important medicines from the market, and strict controls and tight limits of N-nitrosamines are now required. Analytical determination of N-nitrosamines is expensive, laborious, and time-inefficient making development of simpler and faster techniques for their detection crucial. Several reports published in the previous decade have demonstrated that cobalt porphyrin-based chemosensors selectively bind N-nitrosamines, which produces a red shift of characteristic Soret band in UV-Vis spectra. In this study, a thorough re-evaluation of metalloporphyrin/N-nitrosamine adducts was performed using various characterization methods. Herein, we demonstrate that while N-nitrosamines can interact directly with cobalt-based porphyrin complexes, the red shift in UV-Vis spectra is not selectively assured and might also result from the interaction between impurities in N-nitrosamines and porphyrin skeleton or interaction of other functional groups within the N-nitrosamine structure and the metal ion within the porphyrin. We show that pyridine nitrogen is the interacting atom in tobacco-specific N-nitrosamines (TSNAs), as pyridine itself is an active ligand and not the N-nitrosamine moiety. When using Co(II) porphyrins as chemosensors, acidic and basic impurities in dialkyl N-nitrosamines (e.g., formic acid, dimethylamine) are also UV-Vis spectra red shift-producing species. Treatment of these N-nitrosamines with K2CO3 prevents the observed UV-Vis phenomena. These results imply that cobalt-based metalloporphyrins cannot be considered as selective chemosensors for UV-Vis detection of N-nitrosamine moiety-containing species. Therefore, special caution in interpretation of UV-Vis red shift for chemical sensors is suggested.

15.
Chem Rev ; 123(9): 5262-5296, 2023 05 10.
Article in English | MEDLINE | ID: mdl-36473100

ABSTRACT

Chemoenzymatic catalysis, by definition, involves the merging of sequential reactions using both chemocatalysis and biocatalysis, typically in a single reaction vessel. A major challenge, the solution to which, however, is associated with numerous advantages, is to run such one-pot processes in water: the majority of enzyme-catalyzed processes take place in water as Nature's reaction medium, thus enabling a broad synthetic diversity when using water due to the option to use virtually all types of enzymes. Furthermore, water is cheap, abundantly available, and environmentally friendly, thus making it, in principle, an ideal reaction medium. On the other hand, most chemocatalysis is routinely performed today in organic solvents (which might deactivate enzymes), thus appearing to make it difficult to combine such reactions with biocatalysis toward one-pot cascades in water. Several creative approaches and solutions that enable such combinations of chemo- and biocatalysis in water to be realized and applied to synthetic problems are presented herein, reflecting the state-of-the-art in this blossoming field. Coverage has been sectioned into three parts, after introductory remarks: (1) Chapter 2 focuses on historical developments that initiated this area of research; (2) Chapter 3 describes key developments post-initial discoveries that have advanced this field; and (3) Chapter 4 highlights the latest achievements that provide attractive solutions to the main question of compatibility between biocatalysis (used predominantly in aqueous media) and chemocatalysis (that remains predominantly performed in organic solvents), both Chapters covering mainly literature from ca. 2018 to the present. Chapters 5 and 6 provide a brief overview as to where the field stands, the challenges that lie ahead, and ultimately, the prognosis looking toward the future of chemoenzymatic catalysis in organic synthesis.


Subject(s)
Water , Biocatalysis , Solvents , Catalysis
16.
ACS Appl Mater Interfaces ; 14(45): 50947-50955, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36341774

ABSTRACT

A novel strategy has been developed to spontaneously form ligand-free Pd(0) nanoparticles (NPs) from water- and air-sensitive Pd2dba3 in water. These NPs are thoroughly characterized by IR, NMR, and mass spectrometry, revealing that the metal-micelle binding plays a critical role in their stability and activity. High-resolution transmission electron microscopy supported the ultrasmall nature of NPs, whereas X-ray photoelectron spectroscopy analysis confirmed the zero-oxidation state of Pd. The shielding effect of micelles and enhanced stability of NPs enabled fast cross-couplings of water-sensitive triazine adducts of carboxylic acid to form nonsymmetrical biaryl ketones. These naturally formed NPs are more efficient than new synthetic NPs formed under a hydrogen atmosphere and traditional NPs formed using the air-sensitive Grignard reagent as a reductant. The activity of naturally formed NPs is compared with that of synthetic NPs over 34 substrates, revealing that naturally formed NPs are much more efficient than synthetic NPs.

17.
Chem Sci ; 13(5): 1440-1445, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35222928

ABSTRACT

Esterification in an aqueous micellar medium is catalyzed by a commercially available lipase in the absence of any co-factors. The presence of only 2 wt% designer surfactant, TPGS-750-M, assists in a 100% selective enzymatic process in which only primary alcohols participate (in a 1 : 1 ratio with carboxylic acid). An unexpected finding is also disclosed where the simple additive, PhCF3 (1 equiv. vs. substrate), appears to significantly extend the scope of usable acid/alcohol combinations. Taken together, several chemo- and bio-catalyzed 1-pot, multi-step reactions can now be performed in water.

18.
ACS Appl Mater Interfaces ; 14(5): 6754-6761, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35089693

ABSTRACT

Phosphine ligand-free bimetallic nanoparticles (NPs) composed of Ni(0)Pd(0) catalyze highly selective 1,4-reductions of enones, enamides, enenitriles, and ketoamides under aqueous micellar conditions. A minimal amount of Pd (Ni/Pd = 25:1) is needed to prepare these NPs, which results in reductions without impacting N- and O-benzyl, aldehyde, nitrile, and nitro functional groups. A broad range of substrates has been studied, including a gram-scale reaction. The metal-micelle binding is supported by surface-enhanced Raman spectroscopy data on both the NPs and their individual components. Optical imaging, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy analyses reveal the formation of NP-containing micelles or vesicles, NP morphology, particle size distribution, and chemical composition. X-ray photoelectron spectroscopy measurements indicate the oxidation state of each metal within these bimetallic NPs.

19.
Chimia (Aarau) ; 75(11): 936-942, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34798915

ABSTRACT

We present a short overview of the way Novartis chemists interact and collaborate with the academic chemistry community in Switzerland. This article exemplifies a number of collaborations, and illustrates opportunities to foster research synergies between academic and industrial researchers. It also describes established programs available to academic groups, providing them access to Novartis resources and expertise.


Subject(s)
Industry , Research Personnel , Humans , Switzerland
20.
Org Lett ; 23(20): 8114-8118, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34613746

ABSTRACT

Commercially available Pd/C can be used as a catalyst for nitro group reductions with only 0.4 mol % Pd loading. The reaction can be performed using either silane as a transfer hydrogenating agent or simply a hydrogen balloon (∼1 atm pressure). With this technology, a series of nitro compounds was reduced to the desired amines in high chemical yields. Both the catalyst and surfactant were recycled several times without loss of reactivity.


Subject(s)
Amines/chemistry , Nitro Compounds/chemical synthesis , Catalysis , Hydrogenation , Molecular Structure , Nitro Compounds/chemistry , Pharmaceutical Preparations , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...