Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38903106

ABSTRACT

The tumor microenvironment consists of resident tumor cells organized within a compositionally diverse, three-dimensional (3D) extracellular matrix (ECM) network that cannot be replicated in vitro using bottom-up synthesis. We report a new self-assembly system to engineer ECM-rich 3D MatriSpheres wherein tumor cells actively organize and concentrate microgram quantities of decellularized ECM dispersions which modulate cell phenotype. 3D colorectal cancer (CRC) MatriSpheres were created using decellularized small intestine submucosa (SIS) as an orthotopic ECM source that had greater proteomic homology to CRC tumor ECM than traditional ECM formulations such as Matrigel. SIS ECM was rapidly concentrated from its environment and assembled into ECM-rich 3D stroma-like regions by mouse and human CRC cell lines within 4-5 days via a mechanism that was rheologically distinct from bulk hydrogel formation. Both ECM organization and transcriptional regulation by 3D ECM cues affected programs of malignancy, lipid metabolism, and immunoregulation that corresponded with an in vivo MC38 tumor cell subpopulation identified via single cell RNA sequencing. This 3D modeling approach stimulates tumor specific tissue morphogenesis that incorporates the complexities of both cancer cell and ECM compartments in a scalable, spontaneous assembly process that may further facilitate precision medicine.

2.
PLoS Genet ; 19(9): e1010940, 2023 09.
Article in English | MEDLINE | ID: mdl-37713444

ABSTRACT

The unknown pathogenicity of a significant number of variants found in cancer-related genes is attributed to limited epidemiological data, resulting in their classification as variant of uncertain significance (VUS). To date, Breast Cancer gene-2 (BRCA2) has the highest number of VUSs, which has necessitated the development of several robust functional assays to determine their functional significance. Here we report the use of a humanized-mouse embryonic stem cell (mESC) line expressing a single copy of the human BRCA2 for a CRISPR-Cas9-based high-throughput functional assay. As a proof-of-principle, we have saturated 11 codons encoded by BRCA2 exons 3, 18, 19 and all possible single-nucleotide variants in exon 13 and multiplexed these variants for their functional categorization. Specifically, we used a pool of 180-mer single-stranded donor DNA to generate all possible combination of variants. Using a high throughput sequencing-based approach, we show a significant drop in the frequency of non-functional variants, whereas functional variants are enriched in the pool of the cells. We further demonstrate the response of these variants to the DNA-damaging agents, cisplatin and olaparib, allowing us to use cellular survival and drug response as parameters for variant classification. Using this approach, we have categorized 599 BRCA2 variants including 93-single nucleotide variants (SNVs) across the 11 codons, of which 28 are reported in ClinVar. We also functionally categorized 252 SNVs from exon 13 into 188 functional and 60 non-functional variants, demonstrating that saturation genome editing (SGE) coupled with drug sensitivity assays can enhance functional annotation of BRCA2 VUS.


Subject(s)
Breast Neoplasms , Gene Editing , Animals , Humans , Mice , Female , Virulence , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Exons/genetics , Codon , Nucleotides , Breast Neoplasms/genetics , Genetic Predisposition to Disease , BRCA1 Protein/genetics
3.
Cancer Chemother Pharmacol ; 90(2): 149-160, 2022 08.
Article in English | MEDLINE | ID: mdl-35867144

ABSTRACT

BACKGROUND: A phase Ia/Ib trial of metronomic oral vinorelbine (MOV) driven by a mathematical model was performed in heavily pretreated metastatic Non-Small Cell Lung Cancer or Pleural Mesothelioma patients. Disease Control Rate, progression free survival, toxicity and PK/PD were the main endpoints. METHODS: Best MOV scheduling was selected using a simplified phenomenological, semi-mechanistic model with a total weekly dose of 150-mg vinorelbine. Computation of individual PK parameters was performed using population approach. RESULTS: The mathematical model proposed the following metronomic schedule for a 150-mg weekly dose of vinorelbine: 60 mg D1, 30 mg D2, 60 mg D4. A total of 37 heavily pre-treated patients (30 evaluable) were enrolled. Grade III/IV neutropenia was observed in 30% patients. Median PFS was 11 weeks. Disease Control Rate was 73% (i.e.; 13% partial response and 60% stable disease). A large variability in drug exposure (AUC0-24 h: 53%) and PK parameters (Cl: 83%) were observed among patients. Simulated trough levels after D2 and D4 showed similarly 56-73% variability among patients. Drug exposure was not associated with efficacy, but neutropenia was more frequent in patients with AUC > 250 ng/ml.h. Tumor burden, performance status and neutrophils-to-lymphocyte ratio (NLR) were associated with PFS, suggesting that MOV would be indicated in selected patients. We built a composite score to predict efficacy, mixing baseline tumor size and NLR showing 84% selectivity and 75% specificity. CONCLUSIONS: MOV was characterized by important variability in drug exposure among patients. However, and despite being all heavily pre-treated, 73% of disease control rate and 11 weeks PFS were achieved with manageable toxicities. PK/PD relationships yielded conflicting results depending on the initial tumor burden and BSA, suggesting that patients should be carefully selected prior to be scheduled for metronomic regimen. Possible role NLR could play as a predictive marker suggests immunomodulating features with MOV.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neutropenia , Administration, Metronomic , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/pathology , Models, Theoretical , Neutropenia/chemically induced , Neutropenia/drug therapy , Vinblastine/therapeutic use , Vinorelbine/adverse effects
4.
Oncotarget ; 8(29): 47161-47166, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28525370

ABSTRACT

INTRODUCTION: Using mathematical modelling allows to select a treatment's regimen across infinite possibilities. Here, we report the phase I assessment of a new schedule for metronomic vinorelbine in treating refractory advanced NSCLC and mesothelioma patients. RESULTS: Overall, 13 patients were screened and 12 were treated (50% male, median age: 68yrs), including 9 NSCLC patients. All patients received at least one week (3 doses) of treatment. At data cut-off, the median length of treatment was 6.5 weeks (1-32+). All the patients presented with at least one adverse event (AE) and six patients with a severe AE (SAE). One partial response and 5 stable diseases were observed. The median OS was 6.4 months (95% CI, 4.8 to 12 months). The median and mean vinorelbine's AUC were 122 ng/ml*h and 159 ng/ml*h, respectively, with the higher plasmatic vinorelbine exposure associated with the best ORR (difference of AUC comparison between responders and non-responders, p-value 0.017). MATERIALS AND METHODS: The mathematical modelling determined the administration of vinorelbine, 60 mg on Day 1, 30 mg on Day 2 and 60 mg on Day 4 weekly until progression, as the best schedule. Advanced NSCLC or mesothelioma patients progressing after standard treatment were eligible for the trial. NCT02555007. CONCLUSIONS: Responses with acceptable safety profile were observed in heavily pretreated NSCLC and mesothelioma patients using oral vinorelbine at this metronomic dosage based on a mathematic modeling. This study demonstrates the feasibility of this new type of approach, as mathematical modeling may help to rationally decide the better regimen to be clinically tested across infinite possibilities.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Mesothelioma/drug therapy , Models, Theoretical , Vinblastine/analogs & derivatives , Administration, Metronomic , Adult , Aged , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/adverse effects , Carcinoma, Non-Small-Cell Lung/pathology , Combined Modality Therapy , Disease Progression , Drug Resistance, Neoplasm , Female , Humans , Lung Neoplasms/pathology , Male , Mesothelioma/pathology , Mesothelioma, Malignant , Middle Aged , Neoplasm Staging , Retreatment , Treatment Outcome , Vinblastine/administration & dosage , Vinblastine/adverse effects , Vinblastine/therapeutic use , Vinorelbine
5.
Food Environ Virol ; 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25917314

ABSTRACT

This study aims to establish a straightforward and original workflow for high-throughput typing of human adenoviruses (HAdVs) in environmental samples. Occurrence of HAdVs in water is well documented worldwide, but data on diversity of HAdV types circulating in water are scarcely available. Here, the characterisation of viral particles was performed by determination of amplicon sequences using a next-generation sequencing (NGS) approach. Adenoviral DNA was either directly isolated from wastewater or river water concentrates or after a cell culture passage. Genome amplification targeted a hyper variable region of the hexon gene, allowing the discrimination of the 54 human adenoviral types described until now. After read generation on the benchtop MiSeq platform (Illumina), data were analysed using the Mothur software for identification of all HAdV species and types simultaneously present in a unique sample. NGS results showed a relatively wide HAdV diversity of up to six types in one sample, whereas Sanger sequencing always only retrieved the dominant one. Detected types included HAdV-1, HAdV-2, HAdV-3, HAdV-6, HAdV-12, HAdV-31, HAdV-40 and HAdV-41, HAdV-41 being the most abundant in tested samples. In addition, the influence of the cell line (A549 vs 293A cells) on the infectious HAdV typing results was clearly determined. The 293A appeared to be the most suitable cell line allowing the detection of a larger diversity of infectious HAdVs and reflecting a more realistic initial species distribution than using the A549 cells. These findings demonstrated the feasibility of amplicon sequencing NGS approach to identify viruses in complex environmental water samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...