Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Org Lett ; 23(9): 3253-3258, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33844555

ABSTRACT

Here we report a new chemical reagent for transnitrosation under mild experimental conditions. This new reagent is stable to air and moisture across a broad range of temperatures and is effective for transnitrosation in multiple solvents. Compared with traditional nitrosation methods, our reagent shows high functional group tolerance for substrates that are susceptible to oxidation or reversible transnitrosation. Several challenging nitroso compounds are accessed here for the first time, including 15N isotopologues. X-ray data confirm that two rotational isomers of the reagent are configurationally stable at room temperature, although only one isomer is effective for transnitrosation. Computational analysis describes the energetics of rotamer interconversion, including interesting geometry-dependent hybridization effects.

2.
J Org Chem ; 84(18): 12131-12137, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31448604

ABSTRACT

Herein we report the development of radical benzylation reactions of quinones using Selectfluor and catalytic Ag(I) initiators. The reaction is believed to proceed via a C-H abstraction mechanism after Ag(I)-mediated reduction of Selectfluor. This reaction occurs under mild conditions and is effective for a variety of quinones and radical precursors bearing primary benzylic carbons. The use of preformed Ag(4-OMePy)2NO3 as a catalyst proved effective in improving the reaction efficiency by reducing unwanted degradation pathways available to Selectfluor.

3.
Org Lett ; 19(21): 5772-5775, 2017 11 03.
Article in English | MEDLINE | ID: mdl-29043819

ABSTRACT

A new method for silver-catalyzed Minisci reactions using Selectfluor as a mild oxidant is reported. Heteroarenes and quinones both participate in radical C-H alkylation and arylation from a variety of carboxylic and boronic acid radical precursors. Several oxidatively sensitive and highly reactive radical species are successful, providing structures that are challenging to access by other means.

SELECTION OF CITATIONS
SEARCH DETAIL