Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 365: 54-61, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36780953

ABSTRACT

The measurement of volumetric titer is an integral step in the assessment and selection of a production cell line and cell culture process. The production of monoclonal antibodies (mAbs), a major class of therapeutic proteins, in Chinese Hamster Ovary (CHO) cell lines is challenging due to the clone-to-clone variations in the intrinsic capability to secrete a biologically complex protein. The measurement of intracellular mAb concentration could be a valuable tool to determine the ratio of intracellular to secreted product and be part of the evaluation of potential mAb productive cell lines. High throughput automation is a valuable tool that is used in bioprocess development to reduce work intensive steps. When coupled with the Simple Western (Wes) platform, automated capillary electrophoresis is an efficient method to measure recombinant protein concentration. In this study, we demonstrate the utility of using the automated Wes to rapidly measure intracellular titer and then compare the intracellular titer, volumetric titer and specific productivity between high and low production CHO clones expressing a model human IgG1 mAb.


Subject(s)
Antibodies, Monoclonal , Electrophoresis, Capillary , Cricetinae , Animals , Humans , Cricetulus , CHO Cells , Recombinant Proteins/metabolism , Clone Cells
2.
Biotechnol J ; 16(7): e2000629, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33951311

ABSTRACT

Chinese hamster ovary (CHO) cells are routinely used in the biopharmaceutical industry for production of therapeutic monoclonal antibodies (mAbs). Although multiple offline and time-consuming measurements of spent media composition and cell viability assays are used to monitor the status of culture in biopharmaceutical manufacturing, the day-to-day changes in the cellular microenvironment need further in-depth characterization. In this study, two-photon fluorescence lifetime imaging microscopy (2P-FLIM) was used as a tool to directly probe into the health of CHO cells from a bioreactor, exploiting the autofluorescence of intracellular nicotinamide adenine dinucleotide phosphate (NAD(P)H), an enzymatic cofactor that determines the redox state of the cells. A custom-built multimodal microscope with two-photon FLIM capability was utilized to monitor changes in NAD(P)H fluorescence for longitudinal characterization of a changing environment during cell culture processes. Three different cell lines were cultured in 0.5 L shake flasks and 3 L bioreactors. The resulting FLIM data revealed differences in the fluorescence lifetime parameters, which were an indicator of alterations in metabolic activity. In addition, a simple principal component analysis (PCA) of these optical parameters was able to identify differences in metabolic progression of two cell lines cultured in bioreactors. Improved understanding of cell health during antibody production processes can result in better streamlining of process development, thereby improving product titer and verification of scale-up. To our knowledge, this is the first study to use FLIM as a label-free measure of cellular metabolism in a biopharmaceutically relevant and clinically important CHO cell line.


Subject(s)
Biological Products , Animals , CHO Cells , Cricetinae , Cricetulus , Microscopy, Fluorescence , NAD
3.
J Biotechnol ; 141(1-2): 80-3, 2009 Apr 20.
Article in English | MEDLINE | ID: mdl-19428734

ABSTRACT

The cold capture assay as described by Brezinsky et al. [Brezinsky, S.C.G., Chiang, G.G., Szilvasi, A., Mohan, S., Shapiro, R.I., MacLean, A., Sisk, W., Thill, G., 2003. A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J. Immunol. Methods 277, 141-155] stands out as the most simple of single cell secretion assays which can be used to sort for high productivity in recombinant cell lines. At low temperatures the process of protein release from transport vesicles is assumed to be delayed as both vesicle fusion and product release is slowed, so that secreted proteins can be stained on the cell surface using a fluorescent antibody. Typically, the fluorescent signal obtained correlates to the cell specific production rate of the analysed cell. In the present study we compared staining of human antibody producing CHO cells performed at different temperatures and we observed the fluorescent signal over 24h. We found that the staining temperature did not influence signal intensity. The fluorescent signal was stable for 24h at 4 degrees C, decreased to 80% at room temperature (21 degrees C), while it decreased significantly already after 2h at 37 degrees C. Initially, the fluorescent signal was observed on the cell surface, however, at later stages it was found in compartments in the cytoplasm. Finally we compared differences in signal stability depending on whether the antibody used for staining bound to the light or heavy chain of the product and on whether the fluorescent label was a relatively stable protein (phycoerythrin) or a pH-dependent small molecule (FITC). Our results indicate that the secreted product is trapped by the staining antibody on the cell surface at all temperatures. Subsequently these aggregates are endocytosed by the cells, a process which is slowed down at low temperatures.


Subject(s)
Antibodies/chemistry , CHO Cells/cytology , Flow Cytometry/methods , Temperature , Animals , Antibodies/metabolism , Cell Survival , Cricetinae , Cricetulus , Microscopy, Fluorescence , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...