Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 23(12): e2300168, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37551859

ABSTRACT

The uncontrolled accumulation of biological materials on the surface of medical devices through protein adsorption or cell adhesion causes adverse biological reactions in the living host system, leading to complications. In this study, poly(ethylene glycol) (PEG) is successfully grafted onto polyurethane (PU) surfaces by using a new strategy through a simple and efficient transurethanization reaction. The PEG hydroxyl group is deprotonated and then reacted with the PU surface to provide antiadhesive hydrophilic surfaces in a single step. Surface analysis techniques proved the grafting to be efficient and the formation of a hydrophilic polymeric layer at the surface of PU. Biological assays showed that the surface modification induced lower protein adsorption, cell, platelet, and bacterial adhesion than untreated surfaces, showing a potential for biomedical applications.


Subject(s)
Polymers , Polyurethanes , Surface Properties , Polyethylene Glycols , Blood Platelets , Adsorption
2.
Biointerphases ; 15(3): 031016, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32590902

ABSTRACT

In order to address the complexity of chemical analysis of biological systems, time-of-flight secondary ion mass spectrometry (ToF-SIMS), x-ray photoelectron spectroscopy (XPS), and x-ray photoemission electron microscopy (XPEEM) were used for combined surface imaging of a biological tissue formed around a surface neural device after implantation on a nonhuman primate brain. Results show patterns on biological tissue based on extracellular matrix (ECM) and phospholipid membrane (PM) molecular fragments, which were contrasted through principal component analysis of ToF-SIMS negative spectrum. This chemical differentiation may indicate severe inflammation on tissue with an early case of necrosis. Quantification of the elemental composition and the chemical bonding states on both ECM-rich and PM-rich features was possible through XPS analysis from survey and high-resolution spectra, respectively. Variable amounts of carbon (68%-80.5%), nitrogen (10%-2.4%), and oxygen (20.8%-16.5%) were detected on the surface of the biological tissue. Chlorine, phosphorous sodium, and sulfur were also identified in lower extends. Besides that, analysis of the C 1s high-resolution spectra for the same two regions (ECM and PM ones) showed that a compromise between C-C (41.8 at. %) and C-N/C-O (35.6 at. %) amounts may indicate a strong presence of amino acids and proteoglycans on the ECM fragment-rich region, while the great amount of C-C (70.1 at. %) on the PM fragment-rich region is attributed to the large chains of fatty acids connected to phospholipid molecules. The micrometer-scale imaging of these chemical states on tissue was accomplished through XPEEM analysis. The C-C presence was found uniformly distributed across the entire analyzed area, while C-N/C-O and C=O were in two distinct regions. The combination of ToF-SIMS, XPS, and XPEEM is shown here as a powerful, noninvasive approach to map out elemental and chemical properties of biological tissues, i.e., identification of chemically distinct regions, followed by quantification of the surface chemical composition in each distinct region.


Subject(s)
Microscopy , Neural Prostheses , Prosthesis Implantation , Copper/chemistry , Electrodes , Extracellular Matrix/chemistry , Lipid Bilayers/chemistry , Phospholipids/chemistry , Photoelectron Spectroscopy , Principal Component Analysis , Spectrometry, Mass, Secondary Ion , Surface Properties
3.
Biointerphases ; 12(2): 02C418, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28614950

ABSTRACT

This contribution reports on grafting of bioactive polymers such as poly(sodium styrene sulfonate) (polyNaSS) onto titanium (Ti) surfaces. This grafting process uses a modified dopamine as an anchor molecule to link polyNaSS to the Ti surface. The grafting process combines reversible addition-fragmentation chain transfer polymerization, postpolymerization modification, and thiol-ene chemistry. The first step in the process is to synthetize architecture controlled polyNaSS with a thiol end group. The second step is the adhesion of the dopamine acrylamide (DA) anchor onto the Ti surfaces. The last step is grafting polyNaSS to the DA-modified Ti surfaces. The modified dopamine anchor group with its bioadhesive properties is essential to link bioactive polymers to the Ti surface. The polymers are characterized by conventional methods (nuclear magnetic resonance, size exclusion chromatography, and attenuated total reflection-Fourier-transformed infrared), and the grafting is characterized by x-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and quartz crystal microbalance with dissipation monitoring. To illustrate the biocompatibility of the grafted Ti-DA-polyNaSS surfaces, their interactions with proteins (albumin and fibronectin) and cells are investigated. Both albumin and fibronectin are readily adsorbed onto Ti-DA-polyNaSS surfaces. The biocompatibility of modified Ti-DA-polyNaSS and control ungrafted Ti surfaces is tested using human bone cells (Saos-2) in cell culture for cell adhesion, proliferation, differentiation, and mineralization. This study presents a new, simple way to graft bioactive polymers onto Ti surfaces using a catechol intermediary with the aim of demonstrating the biocompatibility of these size controlled polyNaSS grafted surfaces.


Subject(s)
Adhesives/chemistry , Coated Materials, Biocompatible/chemistry , Polystyrenes/chemistry , Surface Properties , Titanium/chemistry , Adsorption , Albumins/metabolism , Cell Adhesion , Cell Differentiation , Cell Line , Cell Proliferation , Chemical Phenomena , Chromatography, Gel , Fibronectins/metabolism , Humans , Osteoblasts/physiology , Protein Binding , Quartz Crystal Microbalance Techniques , Spectrum Analysis
4.
Nat Commun ; 7: 13646, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27929089

ABSTRACT

A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule-electrode interface.

5.
Langmuir ; 31(19): 5406-15, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25893643

ABSTRACT

The formation of partial perfluoroalkyl or alkyl radicals from partial perfluoroalkyl or alkyl iodides (ICH2CH2C6F13 and IC6H13) and their reaction with surfaces takes place at low driving force (∼-0.5 V/SCE) when the electrochemical reaction is performed in acetonitrile in the presence of diazonium salts (ArN2(+)), at a potential where the latter is reduced. By comparison to the direct grafting of ICH2CH2C6F13, this corresponds to a gain of ∼2.1 V in the case of 4-nitrobenzenediazonium. Such electrochemical reaction permits the modification of gold surfaces (and also carbon, iron, and copper) with mixed aryl-alkyl groups (Ar = 3-CH3-C6H4, 4-NO2-C6H4, and 4-Br-C6H4, R = C6H13 or (CH2)2-C6F13). These strongly bonded mixed layers are characterized by IRRAS, XPS, ToF-SIMS, ellipsometry, water contact angles, and cyclic voltammetry. The relative proportions of grafted aryl and alkyl groups can be varied along with the relative concentrations of diazonium and iodide components in the grafting solution. The formation of the films is assigned to the reaction of aryl and alkyl radicals on the surface and on the first grafted layer. The former is obtained from the electrochemical reduction of the diazonium salt; the latter results from the abstraction of an iodine atom by the aryl radical. The mechanism involved in the growth of the film provides an example of complex surface radical chemistry.

6.
Chem Commun (Camb) ; 49(16): 1615-7, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23338156

ABSTRACT

This work describes an integrated approach for designing on demand Self-Assembled Monolayers (SAMs) on silicon oxides and particularly glass substrates for cell biology applications. Starting from commercially available compounds, the strategy relies on thiol-ene reaction and provides high quality SAMs exhibiting adhesive and anti-adhesive patterns.


Subject(s)
Ethylene Glycol/chemical synthesis , Silicon Dioxide/chemistry , Sulfhydryl Compounds/chemistry , Adsorption , Animals , Bacterial Adhesion , Cattle , Dogs , Escherichia coli/chemistry , Ethylene Glycol/chemistry , Fibrinogen/chemistry , Glass/chemistry , Madin Darby Canine Kidney Cells/chemistry , Molecular Structure , Serum Albumin, Bovine/chemistry , Surface Properties
7.
Opt Express ; 18(19): 20019-28, 2010 Sep 13.
Article in English | MEDLINE | ID: mdl-20940893

ABSTRACT

We present the results of an optical and chemical, depth and surface study of Al/Mo/SiC periodic multilayers, designed as high reflectivity coatings for the extreme ultra-violet (EUV) range. In comparison to the previously studied Al/SiC system, the introduction of Mo as a third material in the multilayer structure allows us to decrease In comparison to the previously studied Al/SiC system with a reflectance of 37% at near normal incidence around 17 nm, the introduction of Mo as a third material in the multilayer structure allows us to decrease the interfacial roughness and achieve an EUV reflectivity of 53.4%, measured with synchrotron radiation. This is the first report of a reflectivity higher than 50% around 17 nm. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS) measurements are performed on the Al/Mo/SiC system in order to analyze the individual layers within the stack. ToF-SIMS and XPS results give evidence that the first SiC layer is partially oxidized, but the O atoms do not reach the first Mo and Al layers. We use these results to properly describe the multilayer stack and discuss the possible reasons for the difference between the measured and simulated EUV reflectivity values.


Subject(s)
Aluminum/chemistry , Carbon Compounds, Inorganic/chemistry , Lenses , Membranes, Artificial , Molybdenum/chemistry , Photometry/instrumentation , Refractometry/instrumentation , Silicon Compounds/chemistry , Equipment Design , Equipment Failure Analysis , Materials Testing , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...