Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Zool A Ecol Genet Physiol ; 317(4): 205-15, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22539208

ABSTRACT

The avian automatic perching mechanism (APM) involves the automatic digital flexor mechanism (ADFM) and the digital tendon-locking mechanism (DTLM). When birds squat on a perch to sleep, the increased tendon travel distance due to flexion of the knee and ankle supposedly causes the toes to grip the perch (ADFM) and engage the DTLM so perching while sleeping involves no muscular effort. However, the knees and ankles of sleeping European starlings (Sturnus vulgaris) are only slightly flexed and, except for occasional balancing adjustments, the distal two-thirds of the toes are not flexed to grip a 6-mm-diameter perch. The cranial ankle angle (CAA) is ∼120° and the foot forms an inverted "U" that, with the mostly unflexed toes, provides a saddle-like structure so the bird balances its weight over the central pad of the foot (during day weight further back and digits actively grasp perch). In the region of the pad, the tendon sheath of many birds is unribbed, or only very slightly so, and it is always separated from the tendon of the M. flexor digitorum longus by tendons of the other toe flexor muscles. Passive leg flexion produces no toe flexion in anesthetized Starlings and only after 15-20 min, at the onset of rigor mortis, in freshly sacrificed Starlings. Anesthetized Starlings could not remain perched upon becoming unconscious (ADFM, DTLM intact). Birds whose digital flexor tendons were severed or the locking mechanism eliminated surgically (no ADFM or DTLM), so without ability to flex their toes, slept on the perch in a manner similar to unoperated Starlings (except CAA ∼90°-110°). Consequently, there is no APM or ADFM and the DTLM, although involved in lots of other activities, only acts in perching with active contraction of the digital flexor muscles.


Subject(s)
Lower Extremity/physiology , Muscle, Skeletal/physiology , Posture/physiology , Starlings/physiology , Tendons/physiology , Animals , Biomechanical Phenomena , Connecticut , Models, Biological , Muscle, Skeletal/anatomy & histology
2.
PLoS One ; 7(4): e31556, 2012.
Article in English | MEDLINE | ID: mdl-22509242

ABSTRACT

BACKGROUND: Heterodontosaurids are an important but enigmatic and poorly understood early radiation of ornithischian dinosaurs. The late-surviving heterodontosaurid Fruitadens haagarorum from the Late Jurassic (early Tithonian) Morrison Formation of the western USA is represented by remains of several small (<1 metre total body length, <1 kg body mass) individuals that include well-preserved but incomplete cranial and postcranial material. Fruitadens is hypothesized to represent one of the smallest known ornithischian dinosaurs. METHODOLOGY/PRINCIPAL FINDINGS: We describe the cranial and postcranial anatomy of Fruitadens in detail, providing comparisons to all other known heterodontosaurid taxa. High resolution micro-CT data provides new insights into tooth replacement and the internal anatomy of the tooth-bearing bones. Moreover, we provide a preliminary functional analysis of the skull of late-surviving heterodontosaurids, discuss the implications of Fruitadens for current understanding of heterodontosaurid monophyly, and briefly review the evolution and biogeography of heterodontosaurids. CONCLUSIONS/SIGNIFICANCE: The validity of Fruitadens is supported by multiple unique characters of the dentition and hindlimb as well as a distinct character combination. Fruitadens shares highly distinctive appendicular characters with other heterodontosaurids, strengthening monophyly of the clade on the basis of the postcranium. Mandibular morphology and muscle moment arms suggest that the jaws of late-surviving heterodontosaurids, including Fruitadens, were adapted for rapid biting at large gape angles, contrasting with the jaws of the stratigraphically older Heterodontosaurus, which were better suited for strong jaw adduction at small gapes. The lack of wear facets and plesiomorphic dentition suggest that Fruitadens used orthal jaw movements and employed simple puncture-crushing to process food. In combination with its small body size, these results suggest that Fruitadens was an ecological generalist, consuming select plant material and possibly insects or other invertebrates.


Subject(s)
Body Size , Dinosaurs/anatomy & histology , Skull/anatomy & histology , Animals , Dinosaurs/physiology , Paleontology , Phylogeny , Skull/physiology , Terminology as Topic , United States
3.
Proc Biol Sci ; 277(1680): 375-81, 2010 Feb 07.
Article in English | MEDLINE | ID: mdl-19846460

ABSTRACT

The extremes of dinosaur body size have long fascinated scientists. The smallest (<1 m length) known dinosaurs are carnivorous saurischian theropods, and similarly diminutive herbivorous or omnivorous ornithischians (the other major group of dinosaurs) are unknown. We report a new ornithischian dinosaur, Fruitadens haagarorum, from the Late Jurassic of western North America that rivals the smallest theropods in size. The largest specimens of Fruitadens represent young adults in their fifth year of development and are estimated at just 65-75 cm in total body length and 0.5-0.75 kg body mass. They are thus the smallest known ornithischians. Fruitadens is a late-surviving member of the basal dinosaur clade Heterodontosauridae, and is the first member of this clade to be described from North America. The craniodental anatomy and diminutive body size of Fruitadens suggest that this taxon was an ecological generalist with an omnivorous diet, thus providing new insights into morphological and palaeoecological diversity within Dinosauria. Late-surviving (Late Jurassic and Early Cretaceous) heterodontosaurids are smaller and less ecologically specialized than Early (Late Triassic and Early Jurassic) heterodontosaurids, and this ecological generalization may account in part for the remarkable 100-million-year-long longevity of the clade.


Subject(s)
Body Size , Dinosaurs , Fossils , Animals , Biological Evolution , Dinosaurs/anatomy & histology , Dinosaurs/classification , History, Ancient , North America , Paleontology/methods
4.
Evolution ; 24(2): 448-462, 1970 Jun.
Article in English | MEDLINE | ID: mdl-28565073
SELECTION OF CITATIONS
SEARCH DETAIL
...