Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Int J Radiat Biol ; 100(5): 767-776, 2024.
Article in English | MEDLINE | ID: mdl-38442208

ABSTRACT

PURPOSE: Toxicities from head and neck (H&N) radiotherapy (RT) may affect patient quality of life and can be dose-limiting. Proteins from the transforming growth factor beta (TGF-ß) family are key players in the fibrotic response. While TGF-ß1 is known to be pro-fibrotic, TGF-ß3 has mainly been considered anti-fibrotic. Moreover, TGF-ß3 has been shown to act protective against acute toxicities after radio- and chemotherapy. In the present study, we investigated the effect of TGF-ß3 treatment during fractionated H&N RT in a mouse model. MATERIALS AND METHODS: 30 C57BL/6J mice were assigned to three treatment groups. The RT + TGF-ß3 group received local fractionated H&N RT with 66 Gy over five days, combined with TGF-ß3-injections at 24-hour intervals. Animals in the RT reference group received identical RT without TGF-ß3 treatment. The non-irradiated control group was sham-irradiated according to the same RT schedule. In the follow-up period, body weight and symptoms of oral mucositis and lip dermatitis were monitored. Saliva was sampled at five time points. The experiment was terminated 105 d after the first RT fraction. Submandibular and sublingual glands were preserved, sectioned, and stained with Masson's trichrome to visualize collagen. RESULTS: A subset of mice in the RT + TGF-ß3 group displayed increased severity of oral mucositis and increased weight loss, resulting in a significant increase in mortality. Collagen content was significantly increased in the submandibular and sublingual glands for the surviving RT + TGF-ß3 mice, compared with non-irradiated controls. In the RT reference group, collagen content was significantly increased in the submandibular gland only. Both RT groups displayed lower saliva production after treatment compared to controls. TGF-ß3 treatment did not impact saliva production. CONCLUSIONS: When repeatedly administered during fractionated RT at the current dose, TGF-ß3 treatment increased acute H&N radiation toxicities and increased mortality. Furthermore, TGF-ß3 treatment may increase the severity of radiation-induced salivary gland fibrosis.


Subject(s)
Fibrosis , Mice, Inbred C57BL , Salivary Glands , Stomatitis , Transforming Growth Factor beta3 , Animals , Transforming Growth Factor beta3/metabolism , Mice , Stomatitis/etiology , Stomatitis/pathology , Salivary Glands/radiation effects , Salivary Glands/pathology , Disease Models, Animal , Male , Radiation Injuries/pathology , Radiation Injuries/etiology , Female , Radiation Injuries, Experimental/pathology
2.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069306

ABSTRACT

Extracellular vesicles (EVs) are membrane-bound particles released from cells, and their cargo can alter the function of recipient cells. EVs from X-irradiated cells have been shown to play a likely role in non-targeted effects. However, EVs derived from proton irradiated cells have not yet been studied. We aimed to investigate the proteome of EVs and their cell of origin after proton or X-irradiation. The EVs were derived from a human oral squamous cell carcinoma (OSCC) cell line exposed to 0, 4, or 8 Gy from either protons or X-rays. The EVs and irradiated OSCC cells underwent liquid chromatography-mass spectrometry for protein identification. Interestingly, we found different protein profiles both in the EVs and in the OSCC cells after proton irradiation compared to X-irradiation. In the EVs, we found that protons cause a downregulation of proteins involved in cell growth and DNA damage response compared to X-rays. In the OSCC cells, proton and X-irradiation induced dissimilar cell death pathways and distinct DNA damage repair systems. These results are of potential importance for understanding how non-targeted effects in normal tissue can be limited and for future implementation of proton therapy in the clinic.


Subject(s)
Carcinoma, Squamous Cell , Extracellular Vesicles , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Mouth Neoplasms/radiotherapy , Mouth Neoplasms/pathology , Protons , X-Rays , Carcinoma, Squamous Cell/radiotherapy , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Proteins/analysis , Head and Neck Neoplasms/pathology , Extracellular Vesicles/pathology
3.
Sci Rep ; 13(1): 22946, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38135766

ABSTRACT

Meibomian gland dysfunction is the most common cause of dry eye disease and leads to significantly reduced quality of life and social burdens. Because meibomian gland dysfunction results in impaired function of the tear film lipid layer, studying the expression of tear proteins might increase the understanding of the etiology of the condition. Machine learning is able to detect patterns in complex data. This study applied machine learning to classify levels of meibomian gland dysfunction from tear proteins. The aim was to investigate proteomic changes between groups with different severity levels of meibomian gland dysfunction, as opposed to only separating patients with and without this condition. An established feature importance method was used to identify the most important proteins for the resulting models. Moreover, a new method that can take the uncertainty of the models into account when creating explanations was proposed. By examining the identified proteins, potential biomarkers for meibomian gland dysfunction were discovered. The overall findings are largely confirmatory, indicating that the presented machine learning approaches are promising for detecting clinically relevant proteins. While this study provides valuable insights into proteomic changes associated with varying severity levels of meibomian gland dysfunction, it should be noted that it was conducted without a healthy control group. Future research could benefit from including such a comparison to further validate and extend the findings presented here.


Subject(s)
Dry Eye Syndromes , Meibomian Gland Dysfunction , Humans , Meibomian Glands/metabolism , Proteomics , Quality of Life , Dry Eye Syndromes/metabolism , Tears/metabolism
4.
Microbiologyopen ; 12(5): e1388, 2023 10.
Article in English | MEDLINE | ID: mdl-37877660

ABSTRACT

Periodontitis is an inflammatory condition caused by bacteria and represents a serious health problem worldwide as the inflammation damages the supporting tissues of the teeth and may predispose to systemic diseases. Porphyromonas gingivalis is considered a keystone periodontal pathogen that releases bacterial extracellular vesicles (bEVs) containing virulence factors, such as gingipains, that may contribute to the pathogenesis of periodontitis. This study aimed to isolate and characterize bEVs from three strains of P. gingivalis, investigate putative bEV uptake into human oral fibroblasts, and determine the gingipain activity of the bEVs. bEVs from three bacterial strains, ATCC 33277, A7A1-28, and W83, were isolated through ultrafiltration and size-exclusion chromatography. Vesicle size distribution was measured by nano-tracking analysis (NTA). Transmission electron microscopy was used for bEV visualization. Flow cytometry was used to detect bEVs and gingipain activity was measured with an enzyme assay using a substrate specific for arg-gingipain. The uptake of bEVs into oral fibroblasts was visualized using confocal microscopy. NTA showed bEV concentrations from 108 to 1011 particles/mL and bEV diameters from 42 to 356 nm. TEM pictures demonstrated vesicle-like structures. bEV-gingipains were detected both by flow cytometry and enzyme assay. Fibroblasts incubated with bEVs labeled with fluorescent dye displayed intracellular localization consistent with bEV internalization. In conclusion, bEVs from P. gingivalis were successfully isolated and characterized, and their uptake into human oral fibroblasts was documented. The bEVs displayed active gingipains demonstrating their origin from P. gingivalis and the potential role of bEVs in periodontitis.


Subject(s)
Extracellular Vesicles , Periodontitis , Humans , Gingipain Cysteine Endopeptidases , Cysteine Endopeptidases , Porphyromonas gingivalis , Adhesins, Bacterial , Periodontitis/microbiology , Fibroblasts/microbiology
5.
Int J Mol Sci ; 24(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37894899

ABSTRACT

Cytokines are mediators of inflammation that could lead to fibrosis. The aim was to monitor cytokine levels in saliva and serum after locally fractionated radiotherapy of the head and neck in mice and investigate associations with salivary gland fibrosis and hyposalivation. C57BL/6 mice were randomized to sham or X-ray irradiation of 66 Gy in 10 fractions over 5 days. Blood and saliva were collected on days -7, 5, 35, 80, and 105 following cytokine analysis. The harvested submandibular salivary gland was assessed for the presence of fibrosis. Decision tree regression analysis was used to investigate whether cytokine levels could predict late endpoints in terms of hyposalivation or fibrosis. Significant formation of fibrosis in gland tissue and reduced saliva production was found after irradiation. The pro-inflammatory cytokines IL-1α, TNF, TIMP1, G-CSF, KC, and MIP-1α showed increased levels in saliva in irradiated mice and a strong correlation with late endpoints. The decision tree analysis largely separated controls from irradiated animals, with IL-1α being the strongest predictor. Pro-inflammatory cytokines in saliva, but not in serum, were associated with late endpoints. This indicates that cytokine expression in saliva is a good biomarker for local salivary gland damage with IL-1α as the strongest single predictor.


Subject(s)
Saliva , Xerostomia , Mice , Animals , Saliva/metabolism , Cytokines/metabolism , Mice, Inbred C57BL , Salivary Glands/metabolism , Xerostomia/metabolism , Dose Fractionation, Radiation
6.
Int J Pharm ; 645: 123407, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37708999

ABSTRACT

This study investigates the stability and cytotoxicity of biopolymer-coated liposomes for use in the oral cavity. Liposomes (3 mM and 6 mM) were prepared by the thin film method and hydrated with phosphate buffer (PB) or glycerol phosphate buffer (G-PB). For coating, liposomes were added to a biopolymer solution of opposite charge. Particle stability was evaluated by measuring the size, polydispersity index, and zeta potential for up to 60 weeks. In vitro interaction of fluorescent-labelled biopolymer-coated liposomes and dysplastic oral keratinocytes was analyzed by confocal microscopy. Potential cytotoxicity was assessed in dysplastic oral keratinocytes by cell proliferation and cell viability. All three biopolymers showed good coating abilities for both concentrations and hydration media. The alginate coated liposomes in PB, 3 mM chitosan-coated liposomes in PB, and chitosan-coated liposomes in G-PB were stable for up to 60 weeks. In vitro studies demonstrated low cytotoxicity for all coated liposomes and non-specific cellular uptake of biopolymer-coated liposomes, independent of biopolymer, surface charge, lipid concentration and hydration media. All three formulations demonstrated low cytotoxicity and were considered safe. Alginate- and chitosan-coated liposomes demonstrated good stability over time and may be promising agents for use in the oral cavity and should be investigated further.

7.
Int J Mol Sci ; 24(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686214

ABSTRACT

Sjögren's syndrome is an autoimmune rheumatic disease characterized by inflammation of the salivary and lacrimal glands, often manifesting as dry mouth and dry eyes. To simplify diagnostics of primary Sjögren's syndrome (pSS), a non-invasive marker is needed. The aim of the study was to compare the RNA content of salivary extracellular vesicles (EVs) between patients with pSS and healthy controls using microarray technology. Stimulated whole saliva was collected from 11 pSS patients and 11 age-matched controls. EV-RNA was isolated from the saliva samples using a Qiagen exoRNeasy Midi Kit and analyzed using Affymetrix Clariom D™ microarrays. A one-way ANOVA test was used to compare the mean signal values of each transcript between the two groups. A total of 9307 transcripts, coding and non-coding RNA, were detected in all samples. Of these transcripts, 1475 showed statistically significant differential abundance between the pSS and the control groups, generating two distinct EV-RNA patterns. In particular, tRNAs were downregulated in pSS patients, with the transcript tRNA-Ile-AAT-2-1 showing a 2-fold difference, and a promise as a potential biomarker candidate. This study therein demonstrates the potential for using salivary EV-RNA in pSS diagnostics.


Subject(s)
Autoimmune Diseases , Extracellular Vesicles , Keratoconjunctivitis Sicca , Sjogren's Syndrome , Humans , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/genetics , Extracellular Vesicles/genetics , RNA , RNA, Untranslated
8.
Acta Oncol ; 62(11): 1574-1580, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37703217

ABSTRACT

BACKGROUND: The purpose of this study was to investigate acute normal tissue responses in the head and neck region following proton- or X-irradiation of a murine model. MATERIALS AND METHODS: Female C57BL/6J mice were irradiated with protons (25 or 60 MeV) or X-rays (100 kV). The radiation field covered the oral cavity and the major salivary glands. For protons, two different treatment plans were used, either with the Bragg Peak in the middle of the mouse (BP) or outside the mouse (transmission mode; TM). Delivered physical doses were 41, 45, and 65 Gy given in 6, 7, and 10 fractions for BP, TM, and X-rays, respectively. Alanine dosimetry was used to assess delivered doses. Oral mucositis and dermatitis were scored using CTC v.2.0-based tables. Saliva was collected at baseline, right after end of irradiation, and at day 35. RESULTS: The measured dose distribution for protons (TM) and X-rays was very similar. Oral mucositis appeared earlier, had a higher score and was found in a higher percentage of mice after proton irradiation compared to X-irradiation. Dermatitis, on the other hand, had a similar appearance after protons and X-rays. Compared to controls, saliva production was lower right after termination of proton- and X-irradiation. The BP group demonstrated saliva recovery compared to the TM and X-ray group at day 35. CONCLUSION: With lower delivered doses, proton irradiation resulted in similar skin reactions and increased oral mucositis compared to X-irradiation. This indicates that the relative biological effectiveness of protons for acute tissue responses in the mouse head and neck is greater than the clinical standard of 1.1. Thus, there is a need for further investigations of the biological effect of protons in normal tissues.


Subject(s)
Dermatitis , Stomatitis , Female , Mice , Animals , Protons , X-Rays , Disease Models, Animal , Mice, Inbred C57BL
9.
J Radiat Res ; 64(1): 44-52, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36253091

ABSTRACT

Radiotherapy (RT) of head and neck (H&N) cancer is known to cause both early- and late-occurring toxicities. To better appraise normal tissue responses and their dependence on treatment parameters such as radiation field and type, as well as dose and fractionation scheme, a preclinical model with relevant endpoints is required. 12-week old female C57BL/6 J mice were irradiated with 100 or 180 kV X-rays to total doses ranging from 30 to 85 Gy, given in 10 fractions over 5 days. The radiation field covered the oral cavity, swallowing structures and salivary glands. Monte Carlo simulations were employed to estimate tissue dose distribution. The follow-up period was 35 days, in order to study the early radiation-induced effects. Baseline and post irradiation investigations included macroscopic and microscopic examinations of the skin, lips, salivary glands and oral mucosa. Saliva sampling was performed to assess the salivary gland function following radiation exposure. A dose dependent radiation dermatitis in the skin was observed for doses above 30 Gy. Oral mucositis in the tongue appeared as ulcerations on the ventral surface of the tongue for doses of 75-85 Gy. The irradiated mice showed significantly reduced saliva production compared to controls. In summary, a preclinical model to investigate a broad panel of normal tissue responses following fractionated irradiation of the H&N region was established. The optimal dose to study early radiation-induced effects was found to be around 75 Gy, as this was the highest tolerated dose that gave acute effects similar to that observed in cancer patients.


Subject(s)
Head and Neck Neoplasms , Radiation Injuries , Female , Animals , Mice , Mice, Inbred C57BL , Salivary Glands , Saliva , Head and Neck Neoplasms/radiotherapy , Radiation Injuries/etiology , Dose Fractionation, Radiation , Dose-Response Relationship, Radiation
10.
Front Pharmacol ; 13: 880377, 2022.
Article in English | MEDLINE | ID: mdl-35600854

ABSTRACT

The unique properties and applications of nanotechnology in targeting drug delivery, cosmetics, fabrics, water treatment and food packaging have received increased focus the last two decades. The application of nanoparticles in medicine is rapidly evolving, requiring careful investigation of toxicity before clinical use. Chitosan, a derivative of the natural polysaccharide chitin, has become increasingly relevant in modern medicine because of its unique properties as a nanoparticle. Chitosan is already widely used as a food additive and in food packaging, bandages and wound dressings. Thus, with an increasing application worldwide, cytotoxicity assessment of nanoparticles prepared from chitosan is of great interest. The purpose of this review is to provide an updated status of cytotoxicity studies scrutinizing the safety of chitosan nanoparticles used in biomedical research. A search in Ovid Medline from 23 March 1998 to 4 January 2022, with the combination of the search words Chitosan or chitosan, nanoparticle or nano particle or nanosphere or nanocapsule or nano capsule, toxicology or toxic or cytotoxic and mucosa or mucous membrane resulted in a total of 88 articles. After reviewing all the articles, those involving non-organic nanoparticles and cytotoxicity assays conducted exclusively on nanoparticles with anti-tumor effect (i.e., having cytotoxic effect) were excluded, resulting in 70 articles. Overall, the chitosan nanoparticles included in this review seem to express low cytotoxicity regardless of particle composition or cytotoxicity assay and cell line used for testing. Nonetheless, all new chitosan derivatives and compositions are recommended to undergo careful characterization and cytotoxicity assessment before being implemented on the market.

11.
Int J Mol Sci ; 23(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35409074

ABSTRACT

Patients with head and neck cancer (HNC) and patients with primary Sjögren's syndrome (pSS) may exhibit similar symptoms of dry mouth and dry eyes, as a result of radiotherapy (RT) or a consequence of disease progression. To identify the proteins that may serve as promising disease biomarkers, we analysed saliva and tears from 29 radiated HNC patients and 21 healthy controls, and saliva from 14 pSS patients by mass spectrometry-based proteomics. The study revealed several upregulated, and in some instances overlapping, proteins in the two patient groups. Histone H1.4 and neutrophil collagenase were upregulated in whole saliva of both patient groups, while caspase-14, histone H4, and protein S100-A9 were upregulated in HNC saliva only. In HCN tear fluid, the most highly upregulated protein was mucin-like protein 1. These overexpressed proteins in saliva and tears play central roles in inflammation, host cell injury, activation of reactive oxygen species, and tissue repair. In conclusion, the similarities and differences in overexpressed proteins detected in saliva from HNC and pSS patients may contribute to the overall understanding of the different pathophysiological mechanisms inducing dry mouth. Thus, the recurring proteins identified could possibly serve as future promising biomarkers.


Subject(s)
Head and Neck Neoplasms , Sjogren's Syndrome , Xerostomia , Biomarkers/metabolism , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/radiotherapy , Histones/metabolism , Humans , Neoplasm Recurrence, Local/metabolism , Proteomics , Saliva/metabolism , Sjogren's Syndrome/metabolism , Tears/metabolism , Xerostomia/metabolism
12.
Cells ; 11(3)2022 01 19.
Article in English | MEDLINE | ID: mdl-35159133

ABSTRACT

The etiology of dry mouth conditions is multi-faceted. Patients radiated after head and neck cancer (HNC) and those with primary Sjögren's syndrome (pSS) share many of the same symptoms despite different causes. With the aim of better understanding the pathophysiology and biochemical processes behind dry mouth with different etiologies, we investigated the metabolic profile of 10 HNC patients, 9 pSS patients and 10 healthy controls using high-performance liquid chromatography-high resolution mass spectrometry (HPLC-MS) metabolomics. Principal component analysis (PCA) revealed different metabolic profiles when comparing all subjects included in the study. Both patient groups showed higher ratios of several pyrimidine nucleotides and nucleosides when compared to controls. This finding may indicate that purinergic signaling plays a role in dry mouth conditions. Moreover, significantly increased levels of DL-3-aminoisobutyric acid were found in HNC patients when compared to controls, and a similar tendency was observed in the pSS patients. Furthermore, a dysregulation in amino acid metabolism was observed in both patient groups. In conclusion, metabolomics analysis showed separate metabolic profiles for HNC and pSS patients as compared to controls that could be useful in diagnostics and for elucidating the different pathophysiologies. The demonstrated dysregulation of pyrimidine nucleotides and levels of metabolites derived from amino acids in the patient groups should be studied further.


Subject(s)
Head and Neck Neoplasms , Sjogren's Syndrome , Xerostomia , Head and Neck Neoplasms/metabolism , Humans , Metabolomics , Pyrimidine Nucleotides/analysis , Pyrimidine Nucleotides/metabolism , Saliva/metabolism , Sjogren's Syndrome/metabolism , Xerostomia/metabolism
13.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34445702

ABSTRACT

The diagnostic work-up of primary Sjögren's syndrome (pSS) includes quantifying saliva and tear production, evaluation of autoantibodies in serum and histopathological analysis of minor salivary glands. Thus, the potential for further utilizing these fluids and tissues in the quest to find better diagnostic and therapeutic tools should be fully explored. Ten samples of saliva and tears from female patients diagnosed with pSS and ten samples of saliva and tears from healthy females were included for lipidomic analysis of tears and whole saliva using high-performance liquid chromatography coupled to time-of-flight mass spectrometry. In addition, lipidomic analysis was performed on minor salivary gland biopsies from three pSS and three non-SS females. We found significant differences in the lipidomic profiles of saliva and tears in pSS patients compared to healthy controls. Moreover, there were differences in individual lipid species in stimulated saliva that were comparable to those of glandular biopsies, representing an intriguing avenue for further research. We believe a comprehensive elucidation of the changes in lipid composition in saliva, tears and minor salivary glands in pSS patients may be the key to detecting pSS-related dry mouth and dry eyes at an early stage. The identified differences may illuminate the path towards future innovative diagnostic methodologies and treatment modalities for alleviating pSS-related sicca symptoms.


Subject(s)
Lipids/analysis , Sjogren's Syndrome/physiopathology , Adult , Chromatography, High Pressure Liquid/methods , Female , Humans , Lipids/classification , Male , Mass Spectrometry/methods , Middle Aged , Proteomics/methods , Saliva/chemistry , Saliva/metabolism , Salivary Glands, Minor/chemistry , Salivary Glands, Minor/pathology , Sjogren's Syndrome/immunology , Sjogren's Syndrome/metabolism , Tears/chemistry , Tears/metabolism
14.
Cells ; 9(9)2020 09 08.
Article in English | MEDLINE | ID: mdl-32911805

ABSTRACT

Although radiotherapy is a common form of treatment for head and neck cancer, it may lead to tissue damage in the salivary and lacrimal glands, possibly affecting cytokine expression in the gland fluid of treated individuals. Cytokine profiles in saliva and tear fluid of 29 radiated head and neck cancer patients and 20 controls were screened using a multiplex assay. Correlations between cytokine expression and clinical oral and ocular manifestations were examined, and cellular pathways influenced by these cytokines were assessed using the Functional Enrichment Analysis Tool. Significantly elevated cytokines identified in patient saliva were CCL21, IL-4, CX3CL1, CCL2, CXCL1 and CCL15. Many of these cytokines correlated positively with objective signs of oral dryness, and reduced saliva production in the patients. Although CCL21 and IL-4 levels were significantly lower in patient tear fluid, they correlated with subjective ocular symptoms. These increased salivary cytokines affected pro-inflammatory and apoptotic cellular pathways, including T cell signalling, several interleukin signalling pathways, TNF and TGF-ß receptor signalling, and the apoptotic p53 pathway. In conclusion, the upregulated salivary cytokines identified suggest an interplay between innate and adaptive immunity, affecting immunoregulatory cellular pathways. Whether this is due to late effects of radiotherapy or tissue repair remains to be investigated.


Subject(s)
Adaptive Immunity/immunology , Cytokines/metabolism , Neoplasms/immunology , Saliva/metabolism , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
15.
PLoS One ; 15(9): e0238591, 2020.
Article in English | MEDLINE | ID: mdl-32886718

ABSTRACT

Extracellular vesicles (EVs), are important for intercellular communication in both physiological and pathological processes. To explore the potential of cancer derived EVs as disease biomarkers for diagnosis, monitoring, and treatment decision, it is necessary to thoroughly characterize their biomolecular content. The aim of the study was to characterize and compare the protein content of EVs derived from three different cancer cell lines in search of a specific molecular signature, with emphasis on proteins related to the carcinogenic process. Oral squamous cell carcinoma (OSCC), pancreatic ductal adenocarcinoma (PDAC) and melanoma brain metastasis cell lines were cultured in CELLine AD1000 flasks. EVs were isolated by ultrafiltration and size-exclusion chromatography and characterized. Next, the isolated EVs underwent liquid chromatography-mass spectrometry (LC-MS) analysis for protein identification. Functional enrichment analysis was performed for a more general overview of the biological processes involved. More than 600 different proteins were identified in EVs from each particular cell line. Here, 14%, 10%, and 24% of the identified proteins were unique in OSCC, PDAC, and melanoma vesicles, respectively. A specific protein profile was discovered for each cell line, e.g., EGFR in OSCC, Muc5AC in PDAC, and FN1 in melanoma vesicles. Nevertheless, 25% of all the identified proteins were common to all cell lines. Functional enrichment analysis linked the proteins in each data set to biological processes such as "biological adhesion", "cell motility", and "cellular component biogenesis". EV proteomics discovered cancer-specific protein profiles, with proteins involved in processes promoting tumor progression. In addition, the biological processes associated to the melanoma-derived EVs were distinct from the ones linked to the EVs isolated from OSCC and PDAC. The malignancy specific biomolecular cues in EVs may have potential applications as diagnostic biomarkers and in therapy.


Subject(s)
Extracellular Vesicles/pathology , Neoplasms/pathology , Proteins/analysis , Biomarkers, Tumor/analysis , Brain Neoplasms/chemistry , Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Carcinoma, Pancreatic Ductal/chemistry , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Squamous Cell/chemistry , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Extracellular Vesicles/chemistry , Humans , Mass Spectrometry , Melanoma/chemistry , Melanoma/diagnosis , Melanoma/pathology , Mouth Neoplasms/chemistry , Mouth Neoplasms/diagnosis , Mouth Neoplasms/pathology , Neoplasms/chemistry , Neoplasms/diagnosis , Pancreatic Neoplasms/chemistry , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/pathology , Proteomics
16.
J Clin Pathol ; 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32769214

ABSTRACT

The COVID-19 (caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) epidemic started in Wuhan (Hubei Province, China) in mid-December 2019 and quickly spread across the world as a pandemic. As a key to tracing the disease and to implement strategies aimed at breaking the chain of disease transmission, extensive testing for SARS-CoV-2 was suggested. Although nasopharyngeal/oropharyngeal swabs are the most commonly used biological samples for SARS-CoV-2 diagnosis, they have a number of limitations related to sample collection and healthcare personnel safety. In this context, saliva is emerging as a promising alternative to nasopharyngeal/oropharyngeal swabs for COVID-19 diagnosis and monitoring. Saliva collection, being a non-invasive approach with possibility for self-collection, circumvents to a great extent the limitations associated with the use of nasopharyngeal/oropharyngeal swabs. In addition, various salivary biomarkers including the salivary metabolomics offer a high promise to be useful for better understanding of COVID-19 and possibly in the identification of patients with various degrees of severity, including asymptomatic carriers. This review summarises the clinical and scientific basis for the potential use of saliva for COVID-19 diagnosis and disease monitoring. Additionally, we discuss saliva-based biomarkers and their potential clinical and research applications related to COVID-19.

17.
Autoimmunity ; 53(6): 333-343, 2020 09.
Article in English | MEDLINE | ID: mdl-32686529

ABSTRACT

Salivary gland involvement is a characteristic feature of primary Sjögren's syndrome (pSS), where tissue destruction is mediated by infiltrating immune cells, and may be accompanied by the presence of adipose tissue. Optimally diagnosing this multifactorial disease requires the incorporation of additional routines. Screening for disease-specific biomarkers in biological fluid could be a promising approach to increase diagnostic accuracy. We have previously investigated disease biomarkers in saliva and tear fluid of pSS patients, identifying Neutrophil gelatinase-associated lipocalin (NGAL) as the most upregulated protein in pSS. In the current study, we aimed to explore for the first time NGAL expression at the site of inflammation in the pSS disease target organ. Immunohistochemical staining was conducted on minor salivary gland biopsies from 11 pSS patients and 11 non-SS sicca subjects, targeting NGAL-specific cells. Additional NGAL/PNAd double staining was performed to study NGAL expression in high endothelial venules, known as specialised vascular structures. Moreover, NGAL mRNA expression was measured utilising quantitative real-time polymerase chain reaction (qRT-PCR) on minor salivary gland biopsies from 15 pSS patients and 7 non-SS sicca individuals that served as tissue controls. Our results demonstrated NGAL expression in acinar and ductal epithelium within the salivary gland of pSS patients, where significantly greater levels of acinar NGAL were observed in pSS patients (p < .0018) when compared to non-SS subjects. Also, acinar expression positively correlated with focus score values (r2 = 0.54, p < .02), while ductal epithelial expression showed a negative such correlation (r2 = 0.74, p < .003). Some PNAD+ endothelial venules also expressed NGAL. An increase in NGAL staining with increased fatty replacement was also observed in pSS patients. Concurringly, a 27% increase in NGAL mRNA levels were also detected in the minor salivary glands of pSS patients when compared to non-SS tissue control subjects. In conclusion, there is a positive association between increase in NGAL expression and inflammation in the pSS disease target organ, which also coincides with its previously demonstrated upregulation in the saliva of pSS patients. Additional functional analyses are needed to better understand the immunological implications of this potential biomarker.


Subject(s)
Lipocalin-2/metabolism , Saliva/metabolism , Salivary Glands, Minor/immunology , Sjogren's Syndrome/diagnosis , Adult , Aged , Aged, 80 and over , Biomarkers/analysis , Biomarkers/metabolism , Biopsy , Case-Control Studies , Female , Healthy Volunteers , Humans , Immunohistochemistry , Lipocalin-2/analysis , Male , Middle Aged , RNA, Messenger/analysis , RNA, Messenger/metabolism , Saliva/immunology , Salivary Glands, Minor/pathology , Sjogren's Syndrome/immunology , Sjogren's Syndrome/pathology , Young Adult
18.
Front Pharmacol ; 11: 222, 2020.
Article in English | MEDLINE | ID: mdl-32231563

ABSTRACT

Although often overlooked in our daily lives, saliva performs a host of necessary physiological functions, including lubricating and protecting the oral cavity, facilitating taste sensation and digestion and maintaining tooth enamel. Therefore, salivary gland dysfunction and hyposalivation, often resulting from pathogenesis of the autoimmune disease Sjögren's syndrome or from radiotherapy of the head and neck region during cancer treatment, severely reduce the quality of life of afflicted patients and can lead to dental caries, periodontitis, digestive disorders, loss of taste and difficulty speaking. Since their initial discovery in the 1970s, P2 purinergic receptors for extracellular nucleotides, including ATP-gated ion channel P2X and G protein-coupled P2Y receptors, have been shown to mediate physiological processes in numerous tissues, including the salivary glands where P2 receptors represent a link between canonical and non-canonical saliva secretion. Additionally, extracellular nucleotides released during periods of cellular stress and inflammation act as a tissue alarmin to coordinate immunological and tissue repair responses through P2 receptor activation. Accordingly, P2 receptors have gained widespread clinical interest with agonists and antagonists either currently undergoing clinical trials or already approved for human use. Here, we review the contributions of P2 receptors to salivary gland function and describe their role in salivary gland dysfunction. We further consider their potential as therapeutic targets to promote physiological saliva flow, prevent salivary gland inflammation and enhance tissue regeneration.

19.
Acta Odontol Scand ; 78(5): 390-400, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32141357

ABSTRACT

Objective: Salivary flow rate exerts an essential impact on the development and progression of dental erosion. In this work, the experimental dental erosion in non-obese diabetic (NOD) mice with reduced salivary flow rate was induced, and the erosive effect of acidic drinks on their dentition was studied.Material and methods: Three acidic drinks (sports drink, cola light drink and sugar containing cola drink) were given to adult NOD mice (groups: N = 11) as the only drink for 6 weeks. Two control groups were included; wild type and NOD control (groups: N = 9). Experimental and control (water) teeth were dissected out and observed by scanning electron microscopy (SEM). Mandibular first molars were subsequently embedded in Epon, ground transversely, observed again by SEM, and the enamel thickness and tooth height were measured.Results: Mandibular molars were considerably more eroded than maxillary molars. The erosive process started at the top of the cusps and subsequently extended in the cervical, mesio-distal, and pulpal direction. Erosive lesions were evident in increased succession from sports drink, cola light to cola drink exposed mandibular molars, with the lingual tooth height being approximately 23%, 26%, and 37% lower, respectively, compared to the control. The lingual enamel was approximately 48% thinner in sports drink molars and 62% thinner in cola light molars. In cola drink molars, the lingual enamel was totally eroded, and significant erosion of dentine was evident.Conclusion: Reduced salivary flow, together with a high consumption of acidic drinks, results in severe erosion of NOD mice molars.


Subject(s)
Beverages/adverse effects , Carbonated Beverages/adverse effects , Dental Enamel/drug effects , Salivary Glands/physiopathology , Tooth Erosion/chemically induced , Animals , Dental Enamel/diagnostic imaging , Hydrogen-Ion Concentration , Mice , Mice, Inbred NOD , Microscopy, Electron, Scanning , Saliva/chemistry
20.
Autoimmunity ; 52(7-8): 242-250, 2019.
Article in English | MEDLINE | ID: mdl-31661985

ABSTRACT

Salivary and lacrimal gland involvement is a characteristic feature of primary Sjögren's syndrome (pSS), where tissue destruction is mediated by mononuclear cell infiltration, resulting in lacrimal and salivary gland impairment. We have previously shown distinct prevalence of adipose tissue replacement in the minor salivary gland tissue from pSS patients. The salivary gland microenvironment was further examined through microarray analysis, identifying signalling pathways that promoted adipose tissue development, inflammation, and lymphoma. As B cells may also contribute to disease progression, we now aimed to study the B cell pattern with regard to adipocyte development in pSS. Double immunohistochemical staining of paraffin-embedded salivary gland tissue from 22 pSS patients and 11 non-SS tissue controls was employed, using the characteristic pSS autoantigens Ro52 or Ro60, alongside CD27. Additional CD138/CD20 double staining was also performed to identify the plasma- and general B- cell pattern. Our results demonstrated CD27-positive Ro52 and Ro60 specific cells observed within and in close proximity to the adipose tissue. CD138-positive plasma cells were also seen in areas of adipose tissue replacement, while the CD20+ cells were located within focal infiltrates, forming distinct B cell zones. The quantification of CD138+ and CD20+ cells revealed elevated numbers of CD138+ cells in areas of fatty infiltration, and also interstitially, in the salivary glands of pSS patients when compared to non-SS controls. A significant increase (p < .01) in CD138+ cells close to areas of fatty infiltration, and interstitially, with increasing fatty infiltration and focus score was further observed in pSS patients. A correlation between the number of CD20+ B cell zones/mm2 of salivary gland tissue and focus score values was also witnessed in the patients (r2 = 0.6047, p < .001). In conclusion, autoantigen-specific B cells and plasma cells appear prominent in areas of fatty infiltration in salivary glands of pSS patients, where an increase in CD138+ plasma cells and CD20+ B cells, in relation to both fatty and focal infiltration, suggests their active involvement in promoting inflammation. Further studies are needed to assess whether these adipocytes are also a result of tissue repair.


Subject(s)
Adipocytes/pathology , Autoantigens/genetics , B-Lymphocytes/pathology , Salivary Glands/pathology , Sjogren's Syndrome/pathology , Adipocytes/immunology , Adult , Aged , Antigens, CD20/genetics , Antigens, CD20/immunology , Autoantigens/immunology , Autoimmunity , B-Lymphocytes/immunology , Case-Control Studies , Cell Movement , Cellular Microenvironment/genetics , Cellular Microenvironment/immunology , Female , Gene Expression , Humans , Middle Aged , Saliva/chemistry , Saliva/immunology , Salivary Glands/immunology , Signal Transduction , Sjogren's Syndrome/genetics , Sjogren's Syndrome/immunology , Syndecan-1/genetics , Syndecan-1/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...