Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 82(3): 485-491, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30776238

ABSTRACT

A biomimetic transformation of p-menthene glucosides into aromatic monoterpenoids that alluded to mechanisms for essential oil metabolism, which lines up with the precepts of molecular economy, is described. Acid treatment of (-)-(3 S,4 S,6 R)-3,6-dihydroxy-1-menthene 3- O-ß-d-glucopyranoside (1) and (-)-(3 S,4 R,5 R,6 S)-3,5,6-trihydroxy-1-menthene 3- O-ß-d-glucopyranoside (2), from Ageratina glabrata, yielded p-cymene (7) and carvacrol (9). The stable oxidized intermediates (+)-(3 S,4 S,6 R)-3,6-dihydroxy-1-menthene (3), (+)-(1 S,4 S,6 R)-1,6-dihydroxy-2-menthene (4), (+)-(1 R,4 S,6 R)-1,6-dihydroxy-2-menthene (5), (+)-(4 S,6 R)-yabunikkeol (6), (+)-(4 S)-carvotanacetone (8), (+)-(1 S,4 S,5 R,6 R)-1,5,6-trihydroxy-2-menthene (15), (+)-(1 R,4 S,5 R,6 R)-1,5,6-trihydroxy-2-menthene (16), and the new (+)-(4 S,5 R,6 S)-1(7),2-menthadiene (17) permitted establishment of the reaction mechanisms. The reactivity of the hydroxy groups of 4 and 5, as well as those of 15 and 16, was compared by acetylation reactions and supported by DFT calculations, revealing diminished reactivity in 4 and 15 due to the cis configuration of their hydroxy groups at C-1 and C-6. In addition, p-cymene (7) was detected as one of the major constituents of the essential oil of A. glabrata, which matches well with the biomimetic study.


Subject(s)
Biomimetics , Biotransformation , Cymenes/metabolism , Glucosides/metabolism , Terpenes/metabolism , Cymenes/chemistry , Glucosides/chemistry , Molecular Structure , Spectrum Analysis/methods , Terpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...