Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Future Microbiol ; 13: 1585-1601, 2018 11.
Article in English | MEDLINE | ID: mdl-30430852

ABSTRACT

AIM: To evaluate the antibacterial activity of 12 kaurane-type diterpenes against a panel of bacteria that cause endodontic infection. METHODS & MATERIALS: We conducted tests against bacteria in the planktonic or in the sessile mode, cytotoxic assays for the most promising compounds against human normal lung fibroblast cells, and Porphyromonas gingivalis (ATCC 33277) proteomic analysis. RESULTS & CONCLUSION: Kaurenoic acid and its salt exhibited satisfactory antibacterial action against the evaluated bacteria. Proteomic analysis suggested that these compounds might interfere in bacterial metabolism and virulence factor expression. Kaurane-type diterpenes are an important class of natural products and should be considered in the search for new irrigating solutions to treat endodontic infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteroidaceae Infections/drug therapy , Diterpenes/pharmacology , Porphyromonas gingivalis/drug effects , Anti-Bacterial Agents/chemistry , Bacteroidaceae Infections/microbiology , Biofilms/drug effects , Diterpenes/chemistry , Humans , Microbial Viability/drug effects , Mikania/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Porphyromonas gingivalis/growth & development , Porphyromonas gingivalis/isolation & purification , Pulpitis/drug therapy , Pulpitis/microbiology
2.
PLoS One ; 11(4): e0154205, 2016.
Article in English | MEDLINE | ID: mdl-27115996

ABSTRACT

eIF5A is the only protein known to contain the essential and unique amino acid residue hypusine. eIF5A functions in both translation initiation due to its stimulation of methionyl-puromycin synthesis and translation elongation, being highly required for peptide-bound formation of specific ribosome stalling sequences such as poly-proline. The functional interaction between eIF5A, tRNA, and eEF2 on the surface of the ribosome is further clarified herein. Fluorescence anisotropy assays were performed to determine the affinity of eIF5A to different ribosomal complexes and reveal its interaction exclusively and directly with the 60S ribosomal subunit in a hypusine-dependent manner (Ki60S-eIF5A-Hyp = 16 nM, Ki60S-eIF5A-Lys = 385 nM). A 3-fold increase in eIF5A affinity to the 80S is observed upon charged-tRNAiMet binding, indicating positive cooperativity between P-site tRNA binding and eIF5A binding to the ribosome. Previously identified conditional mutants of yeast eIF5A, eIF5AQ22H/L93F and eIF5AK56A, display a significant decrease in ribosome binding affinity. Binding affinity between ribosome and eIF5A-wild type or mutants eIF5AK56A, but not eIF5AQ22H/L93F, is impaired in the presence of eEF2 by 4-fold, consistent with negative cooperativity between eEF2 and eIF5A binding to the ribosome. Interestingly, high-copy eEF2 is toxic only to eIF5AQ22H/L93F and causes translation elongation defects in this mutant. These results suggest that binding of eEF2 to the ribosome alters its conformation, resulting in a weakened affinity of eIF5A and impairment of this interplay compromises cell growth due to translation elongation defects.


Subject(s)
Peptide Elongation Factor 2/metabolism , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/metabolism , Ribosomes/metabolism , Cell Proliferation , HeLa Cells , Humans , Lysine/analogs & derivatives , Lysine/metabolism , Mutation , Peptide Elongation Factor 2/genetics , Peptide Initiation Factors/genetics , Protein Binding , Protein Biosynthesis , RNA-Binding Proteins/genetics , Ribosomes/genetics , Up-Regulation , Eukaryotic Translation Initiation Factor 5A
SELECTION OF CITATIONS
SEARCH DETAIL
...