Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Res ; 237(Pt 1): 116889, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37595826

ABSTRACT

Information on pollutant trophodynamics can be crucial for public health, as contaminated food consumption may lead to deleterious effects. This study was performed in Puruzinho Lake, a remote body of water in the Brazilian Amazon from which a riparian human population obtains an important part of its animal protein intake. Samples from 92 individuals, comprising 13 species and four trophic guilds (iliophagous, planktivorous, omnivorous, and piscivorous fish) were analysed for the determination of trace elements (Fe, Cr, Mn, Ni, Zn, Ca, Sr, Cd, Sn, Tl and Pb) and methylmercury concentrations. Samples from the same individuals had already been analysed for stable isotope (SI) measurements (δ13C and δ15N) in a previous investigation and the SI data have been statistically treated with those generated in this study for the evaluation of trophic dynamics of contaminants. Methylmercury was the only analyte that biomagnified, presenting TMF values of 4.65 and 4.55 for total and resident ichthyofauna, respectively. Trace elements presented either trophic dilution or independence from the trophic position, constituting a behaviour that was coherent with that found in the scientific literature. The similarity between Ni behaviour through the trophic web to that of essential elements contributes to the discussion on the essentiality of this metal to fish. Considering the Non-cancer Risk Assessment, the calculated Target Hazard Quotient (THQ) values were higher than 1.0 for all analysed individuals for methylmercury, as well as for only one individual for nickel. No other analyte rendered THQ values higher than 1.0.

2.
Environ Monit Assess ; 194(11): 805, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36123414

ABSTRACT

Mercury behavior upon resuspension of sediments from two impacted areas of Guanabara Bay was evaluated to assess worst-case methylmercury (MeHg) responses, under dark experimental conditions to prevent demethylation by photolysis. Study areas include the Rio de Janeiro Harbor (RJH) and the chlor-alkali plant-affected Meriti River (MR) estuary. Total mercury (THg) and MeHg concentrations were determined along 24-h experiments of sediment resuspension in the bay water in dark conditions. Fine-grained Meriti River (MR) estuary sediments had 8 times higher MeHg initial concentrations than sandy Rio de Janeiro Harbor (RJH) sediments (3.4 ± 0.29 vs. 0.41 ± 0.1 ng g-1, respectively). Though THg contents were uncorrelated with resuspension time, statistically significant correlations of MeHg (rs = 0.78) and %MeHg in relation to THg (rs = 0.86) with resuspension time were observed for RJH sediments, indicating net methylation only for this study site. These positive correlation trends correspond to a 2.8 times MeHg concentration increase (ΔMeHg = 0.75 ng g-1) and 4.4 times increase in %MeHg (Δ%MeHg = 1.0%), after 24 h of resuspension. This suggests that assessments of factors affecting the MeHg spatial-temporal variability and associated toxicity risks can be limited in some sites if concentration changes due to sediment resuspension-redeposition processes are not considered. Therefore, the inclusion of MeHg evaluation before and after sediment resuspension events is recommendable for the improvement of dredging licensing and monitoring activities.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Alkalies , Brazil , Environmental Monitoring , Geologic Sediments , Mercury/analysis , Methylation , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...