Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 186(2): 945-963, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33620500

ABSTRACT

The phragmoplast separates daughter cells during cytokinesis by constructing the cell plate, which depends on interaction between cytoskeleton and membrane compartments. Proteins responsible for these interactions remain unknown, but formins can link cytoskeleton with membranes and several members of formin protein family localize to the cell plate. Progress in functional characterization of formins in cytokinesis is hindered by functional redundancies within the large formin gene family. We addressed this limitation by employing Small Molecular Inhibitor of Formin Homology 2 (SMIFH2), a small-molecule inhibitor of formins. Treatment of tobacco (Nicotiana tabacum) tissue culture cells with SMIFH2 perturbed localization of actin at the cell plate; slowed down both microtubule polymerization and phragmoplast expansion; diminished association of dynamin-related proteins with the cell plate independently of actin and microtubules; and caused cell plate swelling. Another impact of SMIFH2 was shortening of the END BINDING1b (EB1b) and EB1c comets on the growing microtubule plus ends in N. tabacum tissue culture cells and Arabidopsis thaliana cotyledon epidermis cells. The shape of the EB1 comets in the SMIFH2-treated cells resembled that of the knockdown mutant of plant Xenopus Microtubule-Associated protein of 215 kDa (XMAP215) homolog MICROTUBULE ORGANIZATION 1/GEMINI 1 (MOR1/GEM1). This outcome suggests that formins promote elongation of tubulin flares on the growing plus ends. Formins AtFH1 (A. thaliana Formin Homology 1) and AtFH8 can also interact with EB1. Besides cytokinesis, formins function in the mitotic spindle assembly and metaphase to anaphase transition. Our data suggest that during cytokinesis formins function in: (1) promoting microtubule polymerization; (2) nucleating F-actin at the cell plate; (3) retaining dynamin-related proteins at the cell plate; and (4) remodeling of the cell plate membrane.


Subject(s)
Arabidopsis/genetics , Cytokinesis/genetics , Formins/metabolism , Nicotiana/genetics , Thiones/pharmacology , Uracil/analogs & derivatives , Actins/metabolism , Arabidopsis/drug effects , Arabidopsis/physiology , Cytokinesis/drug effects , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Formins/genetics , Microtubules/drug effects , Microtubules/metabolism , Nicotiana/drug effects , Nicotiana/physiology , Tubulin/metabolism , Uracil/pharmacology
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(3): 283-290, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27940001

ABSTRACT

Listeria monocytogenes, the causative agent of listeriosis, can build up to dangerous levels in refrigerated foods potentially leading to expensive product recalls. An important aspect of the bacterium's growth at low temperatures is its ability to increase the branched-chain fatty acid anteiso C15:0 content of its membrane at lower growth temperatures, which imparts greater membrane fluidity. Mutants in the branched-chain α-keto dehydrogenase (bkd) complex are deficient in branched-chain fatty acids (BCFAs,) but these can be restored by feeding C4 and C5 branched-chain carboxylic acids (BCCAs). This suggests the presence of an alternate pathway for production of acyl CoA precursors for fatty acid biosynthesis. We hypothesize that the alternate pathway is composed of butyrate kinase (buk) and phosphotransbutyrylase (ptb) encoded in the bkd complex which produce acyl CoA products by their sequential action through the metabolism of carboxylic acids. We determined the steady state kinetics of recombinant His-tagged Buk using 11 different straight-chain and BCCA substrates in the acyl phosphate forming direction. Buk demonstrated highest catalytic efficiency with pentanoate as the substrate. Low product formation observed with acetate (C2) and hexanoate (C6) as the substrates indicates that Buk is not involved in either acetate metabolism or long chain carboxylic acid activation. We were also able to show that Buk catalysis occurs through a ternary complex intermediate. Additionally, Buk demonstrates a strong preference for BCCAs at low temperatures. These results indicate that Buk may be involved in the activation and assimilation of exogenous carboxylic acids for membrane fatty acid biosynthesis.


Subject(s)
Listeria monocytogenes/metabolism , Phosphotransferases (Carboxyl Group Acceptor)/metabolism , Acyl Coenzyme A/metabolism , Carboxylic Acids/metabolism , Cold Temperature , Fatty Acids/metabolism , Kinetics , Lipogenesis/physiology , Membrane Fluidity/physiology , Phosphate Acetyltransferase/metabolism , Substrate Specificity
3.
Biochim Biophys Acta ; 1861(9 Pt A): 1102-1110, 2016 09.
Article in English | MEDLINE | ID: mdl-27320015

ABSTRACT

Listeria monocytogenes, the causative organism of the serious food-borne disease listeriosis, has a membrane abundant in branched-chain fatty acids (BCFAs). BCFAs are normally biosynthesized from branched-chain amino acids via the activity of branched chain α-keto acid dehydrogenase (Bkd), and disruption of this pathway results in reduced BCFA content in the membrane. Short branched-chain carboxylic acids (BCCAs) added as media supplements result in incorporation of BCFAs arising from the supplemented BCCAs in the membrane of L. monocytogenes bkd mutant MOR401. High concentrations of the supplements also effect similar changes in the membrane of the wild type organism with intact bkd. Such carboxylic acids clearly act as fatty acid precursors, and there must be an alternative pathway resulting in the formation of their CoA thioester derivatives. Candidates for this are the enzymes phosphotransbutyrylase (Ptb) and butyrate kinase (Buk), the products of the first two genes of the bkd operon. Ptb from L. monocytogenes exhibited broad substrate specificity, a strong preference for branched-chain substrates, a lack of activity with acetyl CoA and hexanoyl CoA, and strict chain length preference (C3-C5). Ptb catalysis involved ternary complex formation. Additionally, Ptb could utilize unnatural branched-chain substrates such as 2-ethylbutyryl CoA, albeit with lower efficiency, consistent with a potential involvement of this enzyme in the conversion of the carboxylic acid additives into CoA primers for BCFA biosynthesis.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Amino Acids, Branched-Chain/biosynthesis , Fatty Acids/biosynthesis , Phosphate Acetyltransferase/metabolism , Phosphotransferases (Carboxyl Group Acceptor)/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Acyl Coenzyme A/metabolism , Amino Acids, Branched-Chain/metabolism , Fatty Acids/metabolism , Humans , Lipogenesis/genetics , Listeria monocytogenes/genetics , Listeria monocytogenes/pathogenicity , Listeriosis/genetics , Listeriosis/microbiology , Listeriosis/pathology , Metabolic Networks and Pathways , Phosphate Acetyltransferase/genetics , Phosphotransferases (Carboxyl Group Acceptor)/metabolism , Substrate Specificity
4.
Plant Cell ; 26(11): 4409-25, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25415978

ABSTRACT

The microtubule plus-end tracking proteins (+TIPs) END BINDING1b (EB1b) and SPIRAL1 (SPR1) are required for normal cell expansion and organ growth. EB proteins are viewed as central regulators of +TIPs and cell polarity in animals; SPR1 homologs are specific to plants. To explore if EB1b and SPR1 fundamentally function together, we combined genetic, biochemical, and cell imaging approaches in Arabidopsis thaliana. We found that eb1b-2 spr1-6 double mutant roots exhibit substantially more severe polar expansion defects than either single mutant, undergoing right-looping growth and severe axial twisting instead of waving on tilted hard-agar surfaces. Protein interaction assays revealed that EB1b and SPR1 bind each other and tubulin heterodimers, which is suggestive of a microtubule loading mechanism. EB1b and SPR1 show antagonistic association with microtubules in vitro. Surprisingly, our combined analyses revealed that SPR1 can load onto microtubules and function independently of EB1 proteins, setting SPR1 apart from most studied +TIPs in animals and fungi. Moreover, we found that the severity of defects in microtubule dynamics in spr1 eb1b mutant hypocotyl cells correlated well with the severity of growth defects. These data indicate that SPR1 and EB1b have complex interactions as they load onto microtubule plus ends and direct polar cell expansion and organ growth in response to directional cues.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Amino Acid Sequence , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Enlargement , Cell Polarity , Genes, Reporter , Hypocotyl/genetics , Hypocotyl/growth & development , Hypocotyl/metabolism , Microtubule-Associated Proteins/genetics , Molecular Sequence Data , Mutagenesis, Insertional , Phenotype , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified , Tubulin/metabolism , Two-Hybrid System Techniques
5.
Plant Physiol Biochem ; 71: 261-7, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23974359

ABSTRACT

Ca(2+)-ATPases are integral membrane proteins that actively transport Ca(2+) against substantial concentration gradients in eukaryotic cells. This active transport is energized by coupling ion translocation with ATP hydrolysis. In order to better understand this coupling mechanism, we studied the nucleotide specificities of isolated ATP binding domains (ABDs) of Solanum lycopersicon Ca(2+)-ATPase (LCA), a type IIA non-calmodulin regulated P-type pump found in tomato plants that is very similar to mammalian sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA), and Arabidopsis Ca(2+)-ATPase, isoform 2 (ACA2), a type IIB calmodulin regulated P-type ATPase found in the endoplasmic reticulum of Arabidopsis cells. We used nucleotide protection against FITC labeling as a measure of binding since both LCA and ACA contained the KGAP(S,V,F)E motif, which has been shown to be modified by fluorescein isothiocyanate (FITC) in P-type pumps from animal cells. We demonstrated that the heterologously expressed GST-tagged ABDs from both LCA and ACA2 were modified by FITC and that ATP protects against this modification. Moreover, GTP was able to reduce, but not eliminate, the level of FITC labeling in both ABD constructs, suggesting that these plant pumps may also bind GTP with low affinity, which is in contrast to mammalian SERCA and PMCA type pumps which do not bind GTP.


Subject(s)
Adenosine Triphosphate/chemistry , Arabidopsis/enzymology , Calcium-Transporting ATPases/chemistry , Fluorescein-5-isothiocyanate/chemistry , Solanum/enzymology , Adenosine Triphosphate/metabolism , Calcium-Transporting ATPases/metabolism , Protein Structure, Tertiary , Signal Transduction
6.
J Cell Sci ; 125(Pt 24): 6137-47, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23077175

ABSTRACT

Na(+)/K(+)-ATPase, an integral membrane protein, has been studied for over a half century with respect to its transporter function in the plasma membrane, where it expels three Na(+) ions from the cell in exchange for two K(+) ions. In this study, we demonstrate a functioning Na(+)/K(+)-ATPase within HEK293 cell nuclei. This subcellular localization was confirmed by western blotting, ouabain-sensitive ATPase activity of the nuclear membrane fraction, immunocytochemistry and delivery of fluorescently tagged Na(+)/K(+)-ATPase α- and ß-subunits. In addition, we observed an overlap between nuclear Na(+)/K(+)-ATPase and Na/Ca-exchanger (NCX) when nuclei were immunostained with commercially available Na(+)/K(+)-ATPase and NCX antibodies, suggesting a concerted physiological coupling between these transporters. In keeping with this, we observed an ATP-dependent, strophanthidin-sensitive Na(+) flux into the nuclear envelope (NE) lumen loaded with the Na-sensitive dye, CoroNa-Green. Analogous experiments using Fluo-5N, a low affinity Ca(2+) indicator, demonstrated a similar ATP-dependent and strophanthidin-sensitive Ca(2+) flux into the NE lumen. Our results reveal an intracellular physiological role for the coordinated efforts of the Na(+)/K(+)-ATPase and NCX to actively remove Ca(2+) from the nucleoplasm into the NE lumen (i.e. the nucleoplasmic reticulum).


Subject(s)
Calcium/metabolism , Cell Nucleus/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Cell Nucleus/enzymology , HEK293 Cells , Homeostasis , Humans , Sheep
7.
Anal Biochem ; 426(1): 22-3, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22484036

ABSTRACT

Blocking efficacy of whole soymilk, nonfat soymilk, SuperBlock, and nonfat milk was evaluated by performing standard protein immunoblotting procedures on both purified protein and crude nuclear extracts from HEK 293 cells. Nonfat soymilk was found to have superior blocking efficacy compared with other blocking agents in terms of high signal-to-noise ratio with the shortest blocking times. In addition, the presence of low concentrations of the detergent Tween 20 (0.05-0.1%, v/v) in the wash buffer as well as antibody incubations significantly lessened the background compared with including only the detergent during wash steps.


Subject(s)
Blotting, Western , Soy Milk/chemistry , Electrophoresis, Polyacrylamide Gel , HEK293 Cells , Humans , Polysorbates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...