Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37687710

ABSTRACT

The deterioration of reinforced concrete structures in marine environments presents multiple problems due to the premature degradation of reinforced steel. This work aimed to study the corrosion of reinforced A630-420H steel when exposed to a 0.5 M NaCl solution. Although this carbon steel is the most widely used material for reinforced concrete structures in Chile, there is limited research on its resistance to corrosion when in contact with saline solutions. The electrochemical reactions and their roles in the corrosion rate were studied using linear sweep voltammetry, weight loss, scanning electron microscopy, and X-ray diffraction techniques. This analysis is unique as it used the superposition model based on mixed potential theory to determine the electrochemical and corrosion parameters. The outcomes of this study show that A630-420H steel has a higher corrosion rate than those of the other commercial carbon steels studied. This fact can be attributed to the competition between the cathodic oxygen reduction reaction and hydrogen evolution reaction, which also depends on the environmental conditions, exposure time, stabilization of the corrosion products layer, and presence of chloride ions. Additionally, the results under mechanical stress conditions show a brittle fracture of the corrosion product oriented longitudinally in the direction of the bend section, where the presence of pores and cracks were also observed. The corrosion products after corrosion were mainly composed of magnetite and lepidocrocite oxide phases, which is in concordance with the electrochemical results.

2.
Nanomaterials (Basel) ; 13(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37764586

ABSTRACT

The electrochemical ion pumping device is a promising alternative for the development of the industry of recovering metals from natural sources-such as seawater, geothermal water, well brine, or reverse osmosis brine-using electrochemical systems, which is considered a non-evaporative process. This technology is potentially used for metals like Li, Cu, Ca, Mg, Na, K, Sr, and others that are mostly obtained from natural brine sources through a combination of pumping, solar evaporation, and solvent extraction steps. As the future demand for metals for the electronic industry increases, new forms of marine mining processing alternatives are being implemented. Unfortunately, both land and marine mining, such as off-shore and deep sea types, have great potential for severe environmental disruption. In this context, a green alternative is the mixing entropy battery, which is a promising technique whereby the ions are captured from a saline natural source and released into a recovery solution with low ionic force using intercalation materials such as Prussian Blue Analogue (PBA) to store cations inside its crystal structure. This new technique, called "electrochemical ion pumping", has been proposed for water desalination, lithium concentration, and blue energy recovery using the difference in salt concentration. The raw material for this technology is a saline solution containing ions of interest, such as seawater, natural brines, or industrial waste. In particular, six main ions of interest-Na+, K+, Mg2+, Ca2+, Cl-, and SO42--are found in seawater, and they constitute 99.5% of the world's total dissolved salts. This manuscript provides relevant information about this new non-evaporative process for recovering metals from aqueous salty solutions using hexacianometals such as CuHCF, NiHCF, and CoHCF as electrodes, among others, for selective ion removal.

3.
Materials (Basel) ; 16(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37110055

ABSTRACT

Considering the continuous increase in production costs and resource optimization, more than a strategic objective has become imperative in the copper mining industry. In the search to improve the efficiency in the use of resources, the present work develops models of a semi-autogenous grinding (SAG) mill using statistical analysis and machine learning (ML) techniques (regression, decision trees, and artificial neural networks). The hypotheses studied aim to improve the process's productive indicators, such as production and energy consumption. The simulation of the digital model captures an increase in production of 4.42% as a function of mineral fragmentation, while there is potential to increase production by decreasing the mill rotational speed, which has a decrease in energy consumption of 7.62% for all linear age configurations. Considering the performance of machine learning in the adjustment of complex models such as SAG grinding, the application of these tools in the mineral processing industry has the potential to increase the efficiency of these processes, either by improving production indicators or by saving energy consumption. Finally, the incorporation of these techniques in the aggregate management of processes such as the Mine to Mill paradigm, or the development of models that consider the uncertainty of the explanatory variables, could further increase the performance of productive indicators at the industrial scale.

4.
Materials (Basel) ; 15(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36233879

ABSTRACT

In the present work an intense bibliographic search is developed, with updated information on the microscopic fundamentals that govern the behavior of flotation operations of chalcopyrite, the main copper mineral in nature. In particular, the effect caused by the presence of pyrite, a non-valuable mineral, but challenging for the operation due to its ability to capture a portion of collector and float, decreasing the quality of the concentrate, is addressed. This manuscript discusses the main chemical and physical mechanisms involved in the phenomena of reagent adsorption on the mineral surface, the impact of pH and type of alkalizing agent, and the effect of pyrite depressants, some already used in the industry and others under investigation. Modern collector reagents are also described, for which, although not yet implemented on an industrial scale, promising results have been obtained in the laboratory, including better copper recovery and selectivity, and even some green reagents present biodegradable properties that generate a better environmental perspective for mineral processing.

5.
Polymers (Basel) ; 14(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36145996

ABSTRACT

The search for polymers that meet the demands of the water recovery process in mining is a contingent challenge. Both the presence of clays and saline waters can impair water recovery from tailings when conventional flocculants are used. In this work, the adsorption of polyacrylamide (PAM), hydrolyzed polyacrylamide (HPAM), poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS), polyacrylic acid (PAA), polyethylene oxide (PEO), and guar gum (GUAR) on a kaolinite surface (010) was investigated using classical molecular dynamics. The results show that the presence of sodium chloride modifies the affinities of the polymers with kaolinite (010). At low salt concentrations, the PAM and GUAR polymers generally show higher adsorption due to the formation of hydrogen bridges. However, the highest adsorptions occur in salt solutions in the presence of HPAM by cationic bridging with sodium ions as a mediator. This high affinity of HPAM is not efficient for flocculation because it re-disperses the particles, but it is promising for the design of new additives produced by grafting HPAM groups onto advanced polymers.

6.
Polymers (Basel) ; 14(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35406255

ABSTRACT

The resistance of kaolin aggregates to shearing in water clarification and recovery operations is a critical input in designing thickener feed wells. A recently formulated but already available criterion is used to determine the shear strength of flocculated kaolin aggregates. The flocculant is a high molecular weight anionic polyelectrolyte. The resistance of the aggregates is evaluated as a function of flocculation time, flocculant dosage, and water quality. The determination is based on a standardized experimental method. First, the time evolution of the average size of kaolin flocs is measured when aggregates are exposed to incremental shear rates from a predetermined base value. Then, the results are fitted to a pseudo-first-order model that allows deriving a characteristic value of the shear rate of rupture associated with the upper limit of the strength of the aggregates. In seawater, at a given dose of flocculant, the strength of the aggregates increases with time up to a maximum; however, at longer times, the resistance decreases until it settles at a stable value corresponding to stable aggregates in size and structure. A higher flocculant dosage leads to stronger aggregates due to more bridges between particles and polymers, leading to a more intricate and resistant particle network. In industrial water with very low salt content, the resistance of the kaolin aggregates is higher than in seawater for the same dose of flocculant. The salt weakens the resistance of the aggregates and works against the efficiency of the flocculant. The study should be of practical interest to concentration plants that use seawater in their operations.

7.
Materials (Basel) ; 15(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35268988

ABSTRACT

Mineral leaching is the key unit operation in metallurgical processes and corresponds to the dissolution of metals. The study of leaching is carried out in many areas, such as geology, agriculture and metallurgy. This paper provides an introduction to the theoretical background regarding the mathematical modelling of the leaching process of copper minerals, establishing an overall picture of the scientific literature on technological developments and the generation of representative mathematical and theoretical models, and indicating the challenges and potential contributions of comprehensive models representing the dynamics of copper mineral leaching.

8.
Materials (Basel) ; 15(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35161082

ABSTRACT

Current challenges in froth flotation are the presence of complex gangues and the use of low-quality waters, such as seawater. In this scenario, the recovery of molybdenum minerals is difficult, mainly due to the hydrophobic faces' physicochemical changes. In the present study, the natural floatability of pure molybdenite was analyzed by using microflotation assays, and hydrophobicity was measured by performing contact-angle measurements. The impact of two clays, kaolin (non-swelling) and Na-montmorillonite (swelling), was studied. The behavior in freshwater and seawater at pH 8 was compared, considering the current condition of the Cu/Mo mining industries, which use seawater in their operations. The presence of clays lowered the natural floatability of molybdenite precisely because they adhere to the surface and reduce its contact angle. However, the intensity with which they cause this phenomenon depends on the type of water and clay. Kaolin strongly adheres to the valuable mineral in both freshwater and seawater. For its part, Na-montmorillonite does it with greater intensity in a saline medium, but in freshwater, a high concentration of phyllosilicate is required to reduce the hydrophobicity of molybdenite. The clays' adherence was validated by scanning electron microscopy (SEM) analysis.

9.
Materials (Basel) ; 15(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35161099

ABSTRACT

Complex gangues and low-quality waters are a concern for the mining industries, particularly in water shortage areas, where the closure of hydric circuits and reduction in water use are essential to maintain the economic and environmental sustainability of mineral processing. This study analyzes the phenomena involved in the water recovery stage, such as sedimentation of clay-based tailings flocculated with anionic polyelectrolyte in industrial water and seawater. Flocculation-sedimentation batch tests were performed to ascertain the aggregate size distribution, the hindered settling rate, and the structure of flocs expressed through their fractal dimension and density. The aggregates' properties were characterized by the Focused Beam Reflectance Measurement (FBRM) and Particle Vision Microscope (PVM) techniques. The impact of the type of water depends on the type of clay that constitutes the suspension. For quartz/kaolin, the highest performance was obtained in industrial water, with bigger aggregates and faster settling rates. However, the tailings composed of quartz/Na-montmorillonite reversed this trend. The type of water impacted the efficiency of primary-particle aggregation. The trials in industrial water generated a portion of non-flocculated particles, which was observed through a bimodal distribution in the unweighted chord-length distribution. This behavior was not observed in seawater, where a perceptible fraction of non-flocculated particles was not found. The additional cationic bonds that offer seawater favor finer primary-particle agglomeration for all tailings types.

10.
Materials (Basel) ; 14(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34885483

ABSTRACT

Environmental pollution today is a latent risk for humanity, here the need to recycle waste of all kinds. This work is related to the kinetic study of the leaching of gold and copper contained in waste electrical and electronic equipment (WEEE) and silver contained in mining wastes (MW), using the O2-thiosemicarbazide system. The results obtained show that this non-toxic leaching system is adequate for the leaching of said metals. Reaction orders were found ranging from 0 (Cu), 0.93 (Ag), and 2.01 (Au) for the effect of the reagent concentration and maximum recoveries of 77.7% (Cu), 95.8% (Au), and 60% (Ag) were obtained. Likewise, the activation energies found show that the leaching of WEEE is controlled by diffusion (Cu Ea = 9.06 and Au Ea = 18.25 kJ/Kmol), while the leaching of MW (Ea = 45.55 kJ/Kmol) is controlled by the chemical reaction. For the case of stirring rate, it was found a low effect and only particles from WEEE and MW must be suspended in solution to proceed with the leaching. The pH has effect only at values above 8, and finally, for the case of MW, the O2 partial pressure has a market effect, going the Ag leaching from 33% at 0.2 atm up to 60% at a 1 atm.

SELECTION OF CITATIONS
SEARCH DETAIL
...