Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 11(12): 1642-1655, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37801341

ABSTRACT

ß2-microglobulin (B2M) is a critical component of the MHC class I molecule and is required to present tumor antigens to T cells. Its loss results in acquired resistance to immune checkpoint blockade (ICB) therapies. However, there have been well-documented cases of B2M-inactivated tumors responding to ICB, justifying investigation of how an antitumor immune response can be generated to tumors without surface MHC class I. We knocked out B2M in three murine models with varying baseline MHC class I expression and sensitivity to anti-programmed death receptor (PD-1) therapy and analyzed the immune responses. MC38 and YUMMER2.1 without B2M responded to anti-PD-1 alone or with an IL2 agonist, and this was mediated by CD4+ T cells and natural killer (NK) cells. The more aggressive B16 without B2M expression only partially responded to the IL2 agonist, and this was dependent on NK cells. When analyzing nearly 300 pretreatment biopsies from patients with melanoma receiving PD-1 blockade-based therapies, we found infrequent B2M mutations or homozygous loss but more frequent LOH or copy-number gains. B2M LOH was enriched in biopsies from patients without response to therapy, and these biopsies were more frequently infiltrated by activated NK cells. We conclude that in the absence of B2M, activation of CD4+ T cells and NK cells can mediate responses to murine models of PD-1 blockade therapy. In addition, in human melanoma, the intratumoral presence of activated NK cells upon partial B2M loss likely selects against tumor escape through low surface MHC class I expression.


Subject(s)
Interleukin-2 , Melanoma , Humans , Animals , Mice , Interleukin-2/genetics , Interleukin-2/pharmacology , Programmed Cell Death 1 Receptor , Histocompatibility Antigens Class I , Immunity
2.
Cancer Res Commun ; 2(10): 1214-1228, 2022 10.
Article in English | MEDLINE | ID: mdl-36588582

ABSTRACT

PAK4 inhibition can sensitize tumors to immune checkpoint blockade (ICB) therapy, however, the underlying mechanisms remain unclear. We report that PAK4 inhibition reverses immune cell exclusion by increasing the infiltration of CD8 T cells and CD103+ dendritic cells (DCs), a specific type of DCs that excel at cross-presenting tumor antigens and constitute a source of CXCL10. Interestingly, in melanoma clinical datasets, PAK4 expression levels negatively correlate with the presence of CCL21, the ligand for CCR7 expressed in CD103+ DCs. Furthermore, we extensively characterized the transcriptome of PAK4 knock out (KO) tumors, in vitro and in vivo, and established the importance of PAK4 expression in the regulation of the extracellular matrix, which can facilitate immune cell infiltration. Comparison between PAK4 wild type (WT) and KO anti-PD-1 treated tumors revealed how PAK4 deletion sensitizes tumors to ICB from a transcriptomic perspective. In addition, we validated genetically and pharmacologically that inhibition of PAK4 kinase activity is sufficient to improve anti-tumor efficacy of anti-PD-1 blockade in multiple melanoma mouse models. Therefore, this study provides novel insights into the mechanism of action of PAK4 inhibition and provides the foundation for a new treatment strategy that aims to overcome resistance to PD-1 blockade by combining anti-PD-1 with a small molecule PAK4 kinase inhibitor.


Subject(s)
Immune Checkpoint Inhibitors , Melanoma , Animals , Mice , Immune Checkpoint Inhibitors/pharmacology , Tumor Microenvironment/genetics , CD8-Positive T-Lymphocytes , Melanoma/drug therapy , Antigens, Neoplasm/pharmacology
3.
Neuro Oncol ; 23(3): 356-375, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33367885

ABSTRACT

Cancer immunotherapy has made remarkable advances with over 50 separate Food and Drug Administration (FDA) approvals as first- or second-line indications since 2015. These include immune checkpoint blocking antibodies, chimeric antigen receptor-transduced T cells, and bispecific T-cell-engaging antibodies. While multiple cancer types now benefit from these immunotherapies, notable exceptions thus far include brain tumors, such as glioblastoma. As such, it seems critical to gain a better understanding of unique mechanistic challenges underlying the resistance of malignant gliomas to immunotherapy, as well as to acquire insights into the development of future strategies. An Immuno-Oncology Think Tank Meeting was held during the 2019 Annual Society for Neuro-Oncology Scientific Conference. Discussants in the fields of neuro-oncology, neurosurgery, neuro-imaging, medical oncology, and cancer immunology participated in the meeting. Sessions focused on topics such as the tumor microenvironment, myeloid cells, T-cell dysfunction, cellular engineering, and translational aspects that are critical and unique challenges inherent with primary brain tumors. In this review, we summarize the discussions and the key messages from the meeting, which may potentially serve as a basis for advancing the field of immune neuro-oncology in a collaborative manner.


Subject(s)
Brain Neoplasms , Glioblastoma , Neoplasms , Brain Neoplasms/therapy , Glioblastoma/therapy , Humans , Immunotherapy , Medical Oncology , Tumor Microenvironment
4.
Clin Cancer Res ; 25(6): 1913-1922, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30498094

ABSTRACT

PURPOSE: Glioblastoma (GBM) is the most common primary malignant tumor in the central nervous system. Our recent preclinical work has suggested that PD-1/PD-L1 plays an important immunoregulatory role to limit effective antitumor T-cell responses induced by active immunotherapy. However, little is known about the functional role that PD-1 plays on human T lymphocytes in patients with malignant glioma.Experimental Design: In this study, we examined the immune landscape and function of PD-1 expression by T cells from tumor and peripheral blood in patients with malignant glioma. RESULTS: We found several differences between PD-1+ tumor-infiltrating lymphocytes (TIL) and patient-matched PD-1+ peripheral blood T lymphocytes. Phenotypically, PD-1+ TILs exhibited higher expression of markers of activation and exhaustion than peripheral blood PD-1+ T cells, which instead had increased markers of memory. A comparison of the T-cell receptor variable chain populations revealed decreased diversity in T cells that expressed PD-1, regardless of the location obtained. Functionally, peripheral blood PD-1+ T cells had a significantly increased proliferative capacity upon activation compared with PD-1- T cells. CONCLUSIONS: Our evidence suggests that PD-1 expression in patients with glioma reflects chronically activated effector T cells that display hallmarks of memory and exhaustion depending on its anatomic location. The decreased diversity in PD-1+ T cells suggests that the PD-1-expressing population has a narrower range of cognate antigen targets compared with the PD-1 nonexpression population. This information can be used to inform how we interpret immune responses to PD-1-blocking therapies or other immunotherapies.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms/immunology , Glioblastoma/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Cytotoxic/immunology , Adult , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/immunology , Brain/cytology , Brain/immunology , Brain/pathology , Brain/surgery , Brain Neoplasms/blood , Brain Neoplasms/drug therapy , Brain Neoplasms/surgery , Female , Gene Expression Profiling , Glioblastoma/blood , Glioblastoma/drug therapy , Glioblastoma/surgery , Humans , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Cytotoxic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...