Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Biomed Pharmacother ; 177: 117051, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959608

ABSTRACT

Due to the limitations of the current skin wound treatments, it is highly valuable to have a wound healing formulation that mimics the extracellular matrix (ECM) and mechanical properties of natural skin tissue. Here, a novel biomimetic hydrogel formulation has been developed based on a mixture of Agarose-Collagen Type I (AC) combined with skin ECM-related components: Dermatan sulfate (DS), Hyaluronic acid (HA), and Elastin (EL) for its application in skin tissue engineering (TE). Different formulations were designed by combining AC hydrogels with DS, HA, and EL. Cell viability, hemocompatibility, physicochemical, mechanical, and wound healing properties were investigated. Finally, a bilayered hydrogel loaded with fibroblasts and mesenchymal stromal cells was developed using the Ag-Col I-DS-HA-EL (ACDHE) formulation. The ACDHE hydrogel displayed the best in vitro results and acceptable physicochemical properties. Also, it behaved mechanically close to human native skin and exhibited good cytocompatibility. Environmental scanning electron microscopy (ESEM) analysis revealed a porous microstructure that allows the maintenance of cell growth and ECM-like structure production. These findings demonstrate the potential of the ACDHE hydrogel formulation for applications such as an injectable hydrogel or a bioink to create cell-laden structures for skin TE.

2.
Article in English | MEDLINE | ID: mdl-38662335

ABSTRACT

Three-dimensional (3D) bioprinting is considered one of the most advanced tools to build up materials for tissue engineering. The aim of this work was the design, development and characterization of a bioink composed of human mesenchymal stromal cells (hMSC) for extrusion through nozzles to create these 3D structures that might potentially be apply to replace the function of damaged natural tissue. In this study, we focused on the advantages and the wide potential of biocompatible biomaterials, such as hyaluronic acid and alginate for the inclusion of hMSC. The bioink was characterized for its physical (pH, osmolality, degradation, swelling, porosity, surface electrical properties, conductivity, and surface structure), mechanical (rheology and printability) and biological (viability and proliferation) properties. The developed bioink showed high porosity and high swelling capacity, while the degradation rate was dependent on the temperature. The bioink also showed negative electrical surface and appropriate rheological properties required for bioprinting. Moreover, stress-stability studies did not show any sign of physical instability. The developed bioink provided an excellent environment for the promotion of the viability and growth of hMSC cells. Our work reports the first-time study of the effect of storage temperature on the cell viability of bioinks, besides showing that our bioink promoted a high cell viability after being extruded by the bioprinter. These results support the suggestion that the developed hMSC-composed bioink fulfills all the requirements for tissue engineering and can be proposed as a biological tool with potential applications in regenerative medicine and tissue engineering.

3.
Int J Pharm ; 647: 123535, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37865132

ABSTRACT

Wound healing is a natural physiological reaction to tissue injury. Hydrogels show attractive advantages in wound healing not only due to their biodegradability, biocompatibility and permeability but also because provide an excellent environment for cell migration and proliferation. The main objective of the present study was the design and characterization of a hydrogel loaded with human mesenchymal stromal cells (hMSCs) for use in would healing of superficial skin injures. Poloxamer 407® was used as biocompatible biomaterial to embed hMSCs. The developed hydrogel containing 20 % (w/w) of polymer resulted in the best formulation with respect to physical, mechanical, morphological and biological properties. Its high swelling capacity confirmed the hydrogel's capacity to absorb wounds' exudate. LIVE/DEAD® assay confirm that hMSCs remained viable for at least 48 h when loaded into the hydrogels. Adding increasing concentrations of hMSCs-loaded hydrogel to the epithelium did not affect keratinocytes' viability and healing capacity and all wound area was closed in less than one day. Our study opens opportunities to exploit poloxamer hydrogels as cell carriers for the treatment of skin superficial wound.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Humans , Poloxamer , Wound Healing , Skin
4.
Nutrients ; 15(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36986062

ABSTRACT

Osteoarthritis (OA) is the most common joint disease, generating pain, disability, and socioeconomic costs worldwide. Currently there are no approved disease-modifying drugs for OA, and safety concerns have been identified with the chronic use of symptomatic drugs. In this context, nutritional supplements and nutraceuticals have emerged as potential alternatives. Among them, collagen is being a focus of particular interest, but under the same term different types of collagens coexist with different structures, compositions, and origins, leading to different properties and potential effects. The aim of this narrative review is to generally describe the main types of collagens currently available in marketplace, focusing on those related to joint health, describing their mechanism of action, preclinical, and clinical evidence. Native and hydrolyzed collagen are the most studied collagen types for joint health. Native collagen has a specific immune-mediated mechanism that requires the recognition of its epitopes to inhibit inflammation and tissue catabolism at articular level. Hydrolyzed collagen may contain biologically active peptides that are able to reach joint tissues and exert chondroprotective effects. Although there are preclinical and clinical studies showing the safety and efficacy of food ingredients containing both types of collagens, available research suggests a clear link between collagen chemical structure and mechanism of action.


Subject(s)
Osteoarthritis , Humans , Osteoarthritis/metabolism , Collagen , Pain , Inflammation , Dietary Supplements
5.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902203

ABSTRACT

Hyaluronic acid (HA) and proteoglycans (such as dermatan sulphate (DS) and chondroitin sulphate (CS)) are the main components of the extracellular matrix of the skin, along with collagen and elastin. These components decrease with age, which implies a loss of skin moisture causing wrinkles, sagging and aging. Currently, the external and internal administration of effective ingredients that can reach the epidermis and dermis is the main alternative for combating skin aging. The objective of this work was to extract, characterise and evaluate the potential of an HA matrix ingredient to support anti-aging. The HA matrix was isolated and purified from rooster comb and characterised physicochemically and molecularly. In addition, its regenerative, anti-aging and antioxidant potential and intestinal absorption were evaluated. The results show that the HA matrix is composed of 67% HA, with an average molecular weight of 1.3 MDa; 12% sulphated glycosaminoglycans, including DS and CS; 17% protein, including collagen (10.4%); and water. The in vitro evaluation of the HA matrix's biological activity showed regenerative properties in both fibroblasts and keratinocytes, as well as moisturising, anti-aging and antioxidant effects. Furthermore, the results suggest that the HA matrix could be absorbed in the intestine, implying a potential oral as well as topical use for skin care, either as an ingredient in a nutraceutical or a cosmetic product.


Subject(s)
Antioxidants , Hyaluronic Acid , Regeneration , Skin Aging , Skin , Animals , Male , Antioxidants/metabolism , Chickens , Chondroitin Sulfates/metabolism , Collagen/metabolism , Fibroblasts/metabolism , Glycosaminoglycans/metabolism , Hyaluronic Acid/metabolism , Skin/metabolism , Skin Aging/physiology
6.
Biotechnol Bioeng ; 120(9): 2717-2724, 2023 09.
Article in English | MEDLINE | ID: mdl-36919270

ABSTRACT

Three dimensional (3D) bioprinting is an emerging technology that enables complex spatial modeling of cell-based tissue engineering products, whose therapeutic potential in regenerative medicine is enormous. However, its success largely depends on the definition of a bioprintable zone, which is specific for each combination of cell-loaded hydrogels (or bioinks) and scaffolds, matching the mechanical and biological characteristics of the target tissue to be repaired. Therefore proper adjustment of the bioink formulation requires a compromise between: (i) the maintenance of cellular critical quality attributes (CQA) within a defined range of specifications to cell component, and (ii) the mechanical characteristics of the printed tissue to biofabricate. Herein, we investigated the advantages of using natural hydrogel-based bioinks to preserve the most relevant CQA in bone tissue regeneration applications, particularly focusing on cell viability and osteogenic potential of multipotent mesenchymal stromal cells (MSCs) displaying tripotency in vitro, and a phenotypic profile of 99.9% CD105+ /CD45,- 10.3% HLA-DR,+ 100.0% CD90,+ and 99.2% CD73+ /CD31- expression. Remarkably, hyaluronic acid, fibrin, and gelatin allowed for optimal recovery of viable cells, while preserving MSC's proliferation capacity and osteogenic potency in vitro. This was achieved by providing a 3D structure with a compression module below 8.8 ± 0.5 kPa, given that higher values resulted in cell loss by mechanical stress. Beyond the biocompatibility of naturally occurring polymers, our results highlight the enhanced protection on CQA exerted by bioinks of natural origin (preferably HA, gelatin, and fibrin) on MSC, bone marrow during the 3D bioprinting process, reducing shear stress and offering structural support for proliferation and osteogenic differentiation.


Subject(s)
Bioprinting , Mesenchymal Stem Cells , Hydrogels/chemistry , Osteogenesis , Gelatin/chemistry , Tissue Engineering/methods , Fibrin/metabolism , Tissue Scaffolds/chemistry , Bioprinting/methods , Printing, Three-Dimensional
7.
Pharmaceutics ; 14(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36015207

ABSTRACT

Osteochondral injuries can lead to osteoarthritis (OA). OA is characterized by the progressive degradation of the cartilage tissue together with bone tissue turnover. Consequently, joint pain, inflammation, and stiffness are common, with joint immobility and dysfunction being the most severe symptoms. The increase in the age of the population, along with the increase in risk factors such as obesity, has led OA to the forefront of disabling diseases. In addition, it not only has an increasing prevalence, but is also an economic burden for health systems. Current treatments are focused on relieving pain and inflammation, but they become ineffective as the disease progresses. Therefore, new therapeutic approaches, such as tissue engineering and 3D bioprinting, have emerged. In this review, the advantages of using 3D bioprinting techniques for osteochondral regeneration are described. Furthermore, the biomaterials, cell types, and active molecules that are commonly used for these purposes are indicated. Finally, the most recent promising results for the regeneration of cartilage, bone, and/or the osteochondral unit through 3D bioprinting technologies are considered, as this could be a feasible therapeutic approach to the treatment of OA.

8.
Adv Healthc Mater ; 11(19): e2200251, 2022 10.
Article in English | MEDLINE | ID: mdl-35857383

ABSTRACT

Osteoarthritis is a disease with a great socioeconomic impact and mainly affects articular cartilage, a tissue with reduced self-healing capacity. In this work, 3D printed 1,4 butanediol thermoplastic polyurethane (b-TPUe) scaffolds are functionalized and infrapatellar mesenchymal stem cells are used as the cellular source. Since b-TPUe is a biomaterial with mechanical properties similar to cartilage, but it does not provide the desired environment for cell adhesion, scaffolds are functionalized with two methods, one based on collagen type I and the other in 1-pyrenebutiric acid (PBA) as principal components. Alamar Blue and confocal assays display that PBA functionalized scaffolds support higher cell adhesion and proliferation for the first 21 days. However, collagen type I functionalization induces higher proliferation rates and similar cell viability than the PBA method. Further, both functionalization methods induce extracellular matrix synthesis, and the presence of chondrogenic markers (Sox9, Col2a, and Acan). Finally, SEM images probe that functionalized 3D printed scaffolds present much better cell/biomaterial interactions than controls and confirm early chondrogenesis. These results indicate that the two methods of functionalization in the highly hydrophobic b-TPUe enhance the cell-biomaterial interactions and the improvement in the chondro-inductive properties, which have great potential for application in cartilage tissue engineering.


Subject(s)
Cartilage, Articular , Tissue Engineering , Biocompatible Materials/pharmacology , Butylene Glycols , Cell Differentiation , Chondrogenesis , Collagen Type I , Polyurethanes , Tissue Engineering/methods , Tissue Scaffolds/chemistry
9.
Med Res Rev ; 42(5): 1978-2001, 2022 09.
Article in English | MEDLINE | ID: mdl-35707911

ABSTRACT

The complexity of the tumor microenvironment (TME) together with the development of the metastatic process are the main reasons for the failure of conventional anticancer treatment. In recent years, there is an increasing need to advance toward advanced in vitro models of cancer mimicking TME and simulating metastasis to understand the associated mechanisms that are still unknown, and to be able to develop personalized therapy. In this review, the commonly used alternatives and latest advances in biofabrication of tumor-on-chips, which allow the generation of the most sophisticated and optimized models for recapitulating the tumor process, are presented. In addition, the advances that have allowed these new models in the area of metastasis, cancer stem cells, and angiogenesis are summarized, as well as the recent integration of multiorgan-on-a-chip systems to recapitulate natural metastasis and pharmacological screening against it. We also analyze, for the first time in the literature, the normative and regulatory framework in which these models could potentially be found, as well as the requirements and processes that must be fulfilled to be commercially implemented as in vitro study model. Moreover, we are focused on the possible regulatory pathways for their clinical application in precision medicine and decision making through the generation of personalized models with patient samples. In conclusion, this review highlights the synergistic combination of three-dimensional bioprinting systems with the novel tumor/metastasis/multiorgan-on-a-chip systems to generate models for both basic research and clinical applications to have devices useful for personalized oncology.


Subject(s)
Bioprinting , Neoplasms , Bioprinting/methods , Humans , Lab-On-A-Chip Devices , Neoplasms/drug therapy , Precision Medicine/methods , Tumor Microenvironment
10.
Bioact Mater ; 16: 187-203, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35386328

ABSTRACT

To date, skin wounds are still an issue for healthcare professionals. Although numerous approaches have been developed over the years for skin regeneration, recent advances in regenerative medicine offer very promising strategies for the fabrication of artificial skin substitutes, including 3D bioprinting, electrospinning or spraying, among others. In particular, skin sprays are an innovative technique still under clinical evaluation that show great potential for the delivery of cells and hydrogels to treat acute and chronic wounds. Skin sprays present significant advantages compared to conventional treatments for wound healing, such as the facility of application, the possibility to treat large wound areas, or the homogeneous distribution of the sprayed material. In this article, we review the latest advances in this technology, giving a detailed description of investigational and currently commercially available acellular and cellular skin spray products, used for a variety of diseases and applying different experimental materials. Moreover, as skin sprays products are subjected to different classifications, we also explain the regulatory pathways for their commercialization and include the main clinical trials for different skin diseases and their treatment conditions. Finally, we argue and suggest possible future trends for the biotechnology of skin sprays for a better use in clinical dermatology.

11.
Macromol Biosci ; 22(3): e2100435, 2022 03.
Article in English | MEDLINE | ID: mdl-35029035

ABSTRACT

Cartilage is a connective tissue which a limited capacity for healing and repairing. In this context, osteoarthritis (OA) disease may be developed with high prevalence in which the use of scaffolds may be a promising treatment. In addition, three-dimensional (3D) bioprinting has become an emerging additive manufacturing technology because of its rapid prototyping capacity and the possibility of creating complex structures. This study is focused on the development of nanocellulose-alginate (NC-Alg) based bioinks for 3D bioprinting for cartilage regeneration to which it is added chondroitin sulfate (CS) and dermatan sulfate (DS). First, rheological properties are evaluated. Then, sterilization effect, biocompatibility, and printability on developed NC-Alg-CS and NC-Alg-DS inks are evaluated. Subsequently, printed scaffolds are characterized. Finally, NC-Alg-CS and NC-Alg-DS inks are loaded with murine D1-MSCs-EPO and cell viability and functionality, as well as the chondrogenic differentiation ability are assessed. Results show that the addition of both CS and DS to the NC-Alg ink improves its characteristics in terms of rheology and cell viability and functionality. Moreover, differentiation to cartilage is promoted on NC-Alg-CS and NC-Alg-DS scaffolds. Therefore, the utilization of MSCs containing NC-Alg-CS and NC-Alg-DS scaffolds may become a feasible tissue engineering approach for cartilage regeneration.


Subject(s)
Bioprinting , Alginates/chemistry , Animals , Cartilage , Chondroitin , Dermatan Sulfate , Mice , Printing, Three-Dimensional , Regeneration , Tissue Engineering/methods , Tissue Scaffolds/chemistry
12.
Tissue Eng Part B Rev ; 28(5): 1035-1052, 2022 10.
Article in English | MEDLINE | ID: mdl-34652978

ABSTRACT

There are different types of skin diseases due to chronic injuries that impede the natural healing process of the skin. Tissue engineering has focused on the development of bioengineered skin or skin substitutes that cover the wound, providing the necessary care to restore the functionality of injured skin. There are two types of substitutes: acellular skin substitutes, which offer a low response to the body, and cellular skin substitutes (CSSs), which incorporate living cells and appear as a great alternative in the treatment of skin injuries due to their greater interaction and integration with the rest of the body. For the development of a CSS, it is necessary to select the most suitable biomaterials, cell components, and methodology of biofabrication for the wound to be treated. Moreover, these CSSs are immature substitutes that must undergo a maturing process in specific bioreactors, guaranteeing their functionality. The bioreactor simulates the natural state of maturation of the skin by controlling parameters such as temperature, pressure, or humidity, allowing a homogeneous maturation of the CSSs in an aseptic environment. The use of bioreactors not only contributes to the maturation of the CSSs but also offers a new way of obtaining large sections of skin substitutes or natural skin from small portions acquired from the patient, donor, or substitute. Based on the innovation of this technology and the need to develop efficient CSSs, this work offers an update on bioreactor technology in the field of skin regeneration. Impact Statement The manufacture of functional cellular skin substitutes (CSSs) is one of the current goals in the field of tissue engineering to improve the treatment of chronic skin injuries, thus favoring skin repair and regeneration. The main advances in the development of innovative and effective CSSs are largely focused on the selection of more adequate cellular components, biomaterials, and biofabrication techniques to be used in their biofabrication. However, the maturation of CSSs should be an essential step in obtaining a functional substitute capable of replacing the native skin. The sequential procedure from the design of the CSS to its maturation process will be reviewed. In the context of the manufacturing of novel CSSs, different technologies to biofabricate functional structures and how their maturation can be carried out by specific devices are addressed, as well as key challenges facing the design and development of CSSs.


Subject(s)
Skin, Artificial , Humans , Regeneration/physiology , Tissue Engineering/methods , Wound Healing , Biocompatible Materials
13.
Eur J Pharm Biopharm ; 169: 103-112, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34606927

ABSTRACT

The aim was to evaluate relevant biophysic processes related to the physicochemical features and gene transfection mechanism when sphingolipids are incorporated into a cationic niosome formulation for non-viral gene delivery to central nervous system. For that, two formulations named niosphingosomes and niosomes devoid of sphingolipid extracts, as control, were developed by the oil-in water emulsion technique. Both formulations and the corresponding complexes, obtained upon the addition of the reporter EGFP plasmid, were physicochemically and biologically characterized and evaluated. Compared to niosomes, niosphingosomes, and the corresponding complexes decreased particle size and increased superficial charge. Although there were not significant differences in the cellular uptake, cell viability and transfection efficiency increased when human retinal pigment epithelial (ARPE-19) cells were exposed to niosphingoplexes. Endocytosis via caveolae decreased in the case of niosphingoplexes, which showed higher co-localization with lysosomal compartment, and endosomal escape properties. Moreover, niosphingoplexes transfected not only primary central nervous system cells, but also different cells in mouse retina, depending on the administration route, and brain cortex. These preliminary results suggest that niosphingosomes represent a promising non-viral vector formulation purposed for the treatment of both retinal and brain diseases by gene therapy approach.


Subject(s)
Brain , Gene Transfer Techniques , Genetic Vectors/biosynthesis , Liposomes/pharmacology , Retinal Pigment Epithelium , Sphingolipids/pharmacology , Animals , Brain/metabolism , Brain/pathology , Cell Survival , Complex Mixtures/pharmacology , Emulsions/pharmacology , Genetic Therapy/methods , Humans , Mice , Plasmids , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology
14.
Pharmaceutics ; 13(9)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34575549

ABSTRACT

Modifying hydrogels in order to enhance their conductivity is an exciting field with applications in cardio and neuro-regenerative medicine. Therefore, we have designed hybrid alginate hydrogels containing uncoated and protein-coated reduced graphene oxide (rGO). We specifically studied the adsorption of three different proteins, BSA, elastin, and collagen, and the outcomes when these protein-coated rGO nanocomposites are embedded within the hydrogels. Our results demonstrate that BSA, elastin, and collagen are adsorbed onto the rGO surface, through a non-spontaneous phenomenon that fits Langmuir and pseudo-second-order adsorption models. Protein-coated rGOs are able to preclude further adsorption of erythropoietin, but not insulin. Collagen showed better adsorption capacity than BSA and elastin due to its hydrophobic nature, although requiring more energy. Moreover, collagen-coated rGO hybrid alginate hydrogels showed an enhancement in conductivity, showing that it could be a promising conductive scaffold for regenerative medicine.

15.
Bioeng Transl Med ; 6(1): e10192, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33532591

ABSTRACT

Tissue engineering (TE) seeks to fabricate implants that mimic the mechanical strength, structure, and composition of native tissues. Cartilage TE requires the development of functional personalized implants with cartilage-like mechanical properties capable of sustaining high load-bearing environments to integrate into the surrounding tissue of the cartilage defect. In this study, we evaluated the novel 1,4-butanediol thermoplastic polyurethane elastomer (b-TPUe) derivative filament as a 3D bioprinting material with application in cartilage TE. The mechanical behavior of b-TPUe in terms of friction and elasticity were examined and compared with human articular cartilage, PCL, and PLA. Moreover, infrapatellar fat pad-derived human mesenchymal stem cells (MSCs) were bioprinted together with scaffolds. in vitro cytotoxicity, proliferative potential, cell viability, and chondrogenic differentiation were analyzed by Alamar blue assay, SEM, confocal microscopy, and RT-qPCR. Moreover, in vivo biocompatibility and host integration were analyzed. b-TPUe demonstrated a much closer compression and shear behavior to native cartilage than PCL and PLA, as well as closer tribological properties to cartilage. Moreover, b-TPUe bioprinted scaffolds were able to maintain proper proliferative potential, cell viability, and supported MSCs chondrogenesis. Finally, in vivo studies revealed no toxic effects 21 days after scaffolds implantation, extracellular matrix deposition and integration within the surrounding tissue. This is the first study that validates the biocompatibility of b-TPUe for 3D bioprinting. Our findings indicate that this biomaterial can be exploited for the automated biofabrication of artificial tissues with tailorable mechanical properties including the great potential for cartilage TE applications.

16.
Polymers (Basel) ; 12(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187239

ABSTRACT

In the present study, semi- and interpenetrated polymer network (IPN) systems based on hyaluronic acid (HA) and chitosan using ionic crosslinking of chitosan with a bioactive crosslinker, glycerylphytate (G1Phy), and UV irradiation of methacrylate were developed, characterized and evaluated as potential supports for tissue engineering. Semi- and IPN systems showed significant differences between them regarding composition, morphology, and mechanical properties after physicochemical characterization. Dual crosslinking process of IPN systems enhanced HA retention and mechanical properties, providing also flatter and denser surfaces in comparison to semi-IPN membranes. The biological performance was evaluated on primary human mesenchymal stem cells (hMSCs) and the systems revealed no cytotoxic effect. The excellent biocompatibility of the systems was demonstrated by large spreading areas of hMSCs on hydrogel membrane surfaces. Cell proliferation increased over time for all the systems, being significantly enhanced in the semi-IPN, which suggested that these polymeric membranes could be proposed as an effective promoter system of tissue repair. In this sense, the developed crosslinked biomimetic and biodegradable membranes can provide a stable and amenable environment for hMSCs support and growth with potential applications in the biomedical field.

17.
Int J Mol Sci ; 21(17)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878220

ABSTRACT

Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs). Moreover, small GTPases transduce signals by their downstream effector molecules. Many studies demonstrate that small GTPases of the Ras family are involved in neurodegeneration processes. Here, in this review, we focus on the signaling pathways controlled by these small protein superfamilies that culminate in neurodegenerative pathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Specifically, we concentrate on the two most studied families of the Ras superfamily: the Ras and Rho families. We summarize the latest findings of small GTPases of the Ras and Rho families in neurodegeneration in order to highlight these small proteins as potential therapeutic targets capable of slowing down different neurodegenerative diseases.


Subject(s)
Monomeric GTP-Binding Proteins/metabolism , Neurodegenerative Diseases/physiopathology , ras Proteins/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Humans , Signal Transduction
18.
Pharmaceutics ; 12(6)2020 06 11.
Article in English | MEDLINE | ID: mdl-32545286

ABSTRACT

The use of embedded cells within alginate matrices is a developing technique with great clinical applications in cell-based therapies. However, one feature that needs additional investigation is the improvement of alginate-cells viability, which could be achieved by integrating other materials with alginate to improve its surface properties. In recent years, the field of nanotechnology has shown the many properties of a huge number of materials. Graphene oxide (GO), for instance, seems to be a good choice for improving alginate cell viability and functionality. We previously observed that GO, coated with fetal bovine serum (FBS) within alginate hydrogels, improves the viability of embedded myoblasts. In the current research, we aim to study several proteins, specifically bovine serum albumin (BSA), type I collagen and elastin, to discern their impact on the previously observed improvement on embedded myoblasts within alginate hydrogels containing GO coated with FBS. Thus, we describe the mechanisms of the formation of BSA, collagen and elastin protein layers on the GO surface, showing a high adsorption by BSA and elastin, and a decreasing GO impedance and capacitance. Moreover, we described a better cell viability and protein release from embedded cells within hydrogels containing protein-coated GO. We conclude that these hybrid hydrogels could provide a step forward in regenerative medicine.

19.
J Clin Med ; 9(2)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041213

ABSTRACT

Due to the great therapeutic interest that involves the translation of mesenchymal stromal cells (MSCs) into clinical practice, they have been widely studied as innovative drugs, in order to treat multiple pathologies. MSC-based cell therapy involves the administration of MSCs either locally or systemically into the receptor body where they can traffic and migrate towards the affected tissue and participate in the process of healing. The therapeutic effects of MSCs compromise of different mechanisms such as the functional integration of differentiated MSCs into diseased host tissue after transplantation, their paracrine support, and their impact on the regulation of both the innate and the acquired immune system. Here, we establish and provide recent advances about the principal mechanisms of action through which MSCs can perform their activity and effect as a therapeutic tool. The purpose of this review is to examine and discuss the MSCs capacity of migration, their paracrine effect, as well as MSC-mediated modifications on immune cell responses.

20.
Acta Biomater ; 106: 114-123, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32027992

ABSTRACT

Bioprinting is a promising tool to fabricate well-organized cell-laden constructs for repair and regeneration of articular cartilage. The selection of a suitable bioink, in terms of composition and mechanical properties, is crucial for the development of viable cartilage substitutes. In this study, we focused on the use of one of the main cartilage components, hyaluronic acid (HA), to design and formulate a new bioink for cartilage tissue 3D bioprinting. Major characteristics required for this application such as printability, biocompatibility, and biodegradability were analyzed. To produce cartilage constructs with optimal mechanical properties, HA-based bioink was co-printed with polylactic acid (PLA). HA-based bioink was found to improve cell functionality by an increase in the expression of chondrogenic gene markers and specific matrix deposition and, therefore, tissue formation. These results indicate that it is a promising bioink candidate for cartilage tissue engineering based in 3D bioprinting. STATEMENT OF SIGNIFICANCE: The recent appearance of 3D printing technology has enabled great advances in the treatment of osteochondral disorders by fabrication of cartilage tissue constructs that restore and/or regenerate damaged tissue. In this attempt, the selection of a suitable biomaterial, in terms of composition and mechanical properties, is crucial. In this study, we describe for first time the development of a bioink based on the main component of cartilage, HA, with suitable biological and mechanical properties, without involving toxic procedure, and its application  in cartilage tissue bioprinting. Hybrid constructs prepared by co-printing  this  bioink and thermoplastic polymer PLA provided an optimal niche for chondrocyte growth and maintenance as well as mechanical properties necessary to support load forces exerted in native tissue. We highlight the translation potential of this HA-based bioink in the clinical arena.


Subject(s)
Absorbable Implants , Bioprinting , Hydrogels/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Alginates/chemistry , Cartilage, Articular/cytology , Cell Proliferation/drug effects , Cell Survival/drug effects , Chondrocytes/metabolism , Humans , Hyaluronic Acid/chemistry , Ink , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...