Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sol Phys ; 294(3)2019 Mar.
Article in English | MEDLINE | ID: mdl-31057186

ABSTRACT

We have conducted a survey of 575 slow-to-fast stream interaction regions (SIRs) using Solar Terrestrial Relations Observatory (STEREO) A and B data, analyzing their properties while extending a Level-3 data product through 2016. Among 518 pristine SIRs, 54% are associated with heliospheric current sheet (HCS) crossings, and 34% are without any HCS crossing. The other 12% of the SIRs often occur in association with magnetic sectors shorter than three days. The SIRs with HCS crossings have slightly slower speeds but higher maximum number densities, magnetic-field strengths, dynamic pressures, and total pressures than the SIRs without an HCS. The iron charge state is higher throughout the SIRs with an HCS than the SIRs without an HCS, by about 1/3 charge unit. In contrast with the comparable phases of Solar Cycle 23, slightly more SIRs and higher recurrence rates are observed in the years 2009 - 2016 of Cycle 24, with a lower HCS association rate, possibly attributed to persistent equatorial coronal holes and more pseudo-streamers in this recent cycle. The solar-wind speed, peak magnetic field, and peak pressures of SIRs are all lower in this cycle, but the weakening is less than for the comparable background solar-wind parameters. Before STEREO-B lost contact in October 2014, 151 SIR pairs were observed by the twin spacecraft. Of the dual observations, the maximum speed is the best correlated of the plasma parameters. We have obtained a sample of plasma-parameter differences analogous to those that would be observed by a mission at Lagrange points 4 or 5. By studying several cases with large discrepancies between the dual observations, we investigate the effects of HCS relative location, tilt of stream interface, and small transients on the SIR properties. To resolve the physical reasons for the variability of SIR structures, mesoscale multi-point observations and time-dependent solar-wind modeling are ultimately required.

2.
Science ; 268(5213): 1033-6, 1995 May 19.
Article in English | MEDLINE | ID: mdl-7754380

ABSTRACT

The high-speed solar wind streaming from the southern coronal hole was remarkably uniform and steady and was confined by a sharp boundary that extended to the corona and chromosphere. Charge state measurements indicate that the electron temperature in this coronal hole reached a maximum of about 1.5 million kelvin within 3 solar radii of the sun. This result, combined with the observed lack of depletion of heavy elements, suggests that an additional source of momentum is required to accelerate the polar wind.


Subject(s)
Extraterrestrial Environment , Solar System , Elements , Ions , Spacecraft , Spectrum Analysis/instrumentation
3.
Science ; 261(5117): 70-3, 1993 Jul 02.
Article in English | MEDLINE | ID: mdl-17750548

ABSTRACT

Interstellar hydrogen ionized primarily by the solar wind has been detected by the SWICS instrument on the Ulysses spacecraft at a distance of 4.8 astronomical units from the sun. This "pick-up" hydrogen is identified by its distinct velocity distribution function, which drops abruptly at twice the local solar wind speed. From the measured fluxes of pick-up protons and singly charged helium, the number densities of neutral hydrogen and helium in the distant regions of the solar system are estimated to be 0.077 +/- 0.015 and 0.013 +/- 0.003 per cubic centimeter, respectively.

4.
Science ; 257(5076): 1535-9, 1992 Sep 11.
Article in English | MEDLINE | ID: mdl-17776164

ABSTRACT

The ion composition in the Jovian environment was investigated with the Solar Wind Ion Composition Spectrometer on board Ulysses. A hot tenuous plasma was observed throughout the outer and middle magnetosphere. In some regions two thermally different components were identified. Oxygen and sulfur ions with several different charge states, from the volcanic satellite lo, make the largest contribution to the mass density of the hot plasma, even at high latitude. Solar wind particles were observed in all regions investigated. Ions from Jupiter's ionosphere were abundant in the middle magnetosphere, particularly in the highlatitude region on the dusk side, which was traversed for the first time.

5.
Science ; 232(4748): 366-9, 1986 Apr 18.
Article in English | MEDLINE | ID: mdl-17792146

ABSTRACT

Conclusive evidence is presented for the existence of energetic ( approximately 535,0000 to 150,000 electron volts), heavy (>-12 atomic mass units), singly charged cometary ions within approximately 1.5 x 10(6) kilometers of comet Giacobini-Zinner. The observations were made with the University of Maryland/Max-Planck-Institut ultralow-energy charge analyzer on, the International Cometary Explorer spacecraft. The most direct evidence for establishing the mass of these ions was obtained from an analysis of the energy signals in one of the solid-state detectors; it is significant at the three-sigma level. Maximum fluxes were recorded approximately 1 hour before and approximately 1 hour after closest approach to the cometary nucleus. Transformation of the particle angular distributions observed at approximately 50,000 kilometers radial distance from the comet during the inbound pass into a rest frame in which the distributions are nearly isotropic requires a transformation velocity that is consistent with the local solar wind velocity if one assumes that these particles are primarily singly ionized with a mass of 18 +/- 6 atomic mass units. The existence of a frame of reference in which these water-group ions were isotropic implies that they underwent strong pitch angle scattering after their ionization. Particle energies in the rest frame extend to substantially higher values than would be expected if these ions were locally ionized and then picked up by the solar wind, implying that the ions were accelerated or heated. The derived ion density, approximately 0.1 per cubic centimeter, is consistent with a crude model for the production and transport of pickup ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...