Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Genet Metab ; 134(1-2): 60-64, 2021.
Article in English | MEDLINE | ID: mdl-34389248

ABSTRACT

INTRODUCTION: Guanidinoacetate methyltransferase (GAMT) deficiency is an inherited metabolic disorder that impairs the synthesis of creatine (CRE). Lack of CRE in the brain can cause intellectual disability, autistic-like behavior, seizures, and movement disorders. Identification at birth and immediate therapy can prevent intellectual disability and seizures. Here we report the first two cases of GAMT deficiency identified at birth by newborn screening (NBS) in Utah and New York. METHODS: NBS dried blood spots were analyzed by tandem mass spectrometry (MS/MS) using either derivatized or non-derivatized assays to detect guanidinoacetate (GUAC) and CRE. For any positive samples, a second-tier test using a more selective method, ultra-performance liquid chromatography (UPLC) combined with MS/MS, was performed to separate GUAC from potential isobaric interferences. RESULTS: NBS for GAMT deficiency began in Utah on June 1, 2015 using a derivatized method for the detection of GUAC and CRE. In May 2019, the laboratory and method transitioned to a non-derivatized method. GAMT screening was added to the New York State NBS panel on October 1, 2018 using a derivatized method. In New York, a total of 537,408 babies were screened, 23 infants were referred and one newborn was identified with GAMT deficiency. In Utah, a total of 273,902 infants were screened (195,425 with the derivatized method, 78,477 with the non-derivatized method), three infants referred and one was identified with GAMT deficiency. Mean levels of GUAC and CRE were similar between methods (Utah derivatized: GUAC = 1.20 ± 0.43 µmol/L, CRE = 238 ± 96 µmol/L; Utah non-derivatized: GUAC = 1.23 ± 0.61 µmol/L, CRE = 344 ± 150 µmol/L, New York derivatized: GUAC = 1.34 ± 0.57 µmol/L, CRE = 569 ± 155 µmol/L). With either Utah method, similar concentrations of GUAC are observed in first (collected around 1 day of age) and the second NBS specimens (routinely collected at 7-16 days of age), while CRE concentrations decreased in the second NBS specimens. Both infants identified with GAMT deficiency started therapy by 2 weeks of age and are growing and developing normally at 7 (Utah) and 4 (New York) months of age. CONCLUSIONS: Newborn screening allows for the prospective identification of GAMT deficiency utilizing elevated GUAC concentration as a marker. First-tier screening may be incorporated into existing methods for amino acids and acylcarnitines without the need for new equipment or staff. Newborn screening performed by either derivatized or non-derivatized methods and coupled with second-tier testing, has a very low false positive rate and can prospectively identify affected children. SummaryCerebral creatine deficiency syndromes caused by defects in creatine synthesis can result in intellectual disability, and are preventable if therapy is initiated early in life. This manuscript reports the identification of two infants with GAMT deficiency (one of the cerebral creatine deficiency syndromes) by newborn screening and demonstrates NBS feasibility using a variety of methods.


Subject(s)
Guanidinoacetate N-Methyltransferase/deficiency , Language Development Disorders/diagnosis , Movement Disorders/congenital , Neonatal Screening/methods , Neonatal Screening/standards , Chromatography, Liquid , Creatine/metabolism , Dried Blood Spot Testing/methods , Humans , Infant, Newborn , Language Development Disorders/complications , Movement Disorders/complications , Movement Disorders/diagnosis , New York , Prospective Studies , Utah
2.
Mol Genet Metab ; 99(3): 263-8, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20036593

ABSTRACT

INTRODUCTION: Medium chain acyl-CoA dehydrogenase (MCAD) deficiency is one of the most common inborn errors of metabolism. Affected patients have impaired ability to break down medium chain fatty acids during fasting, and typically present in the early years of life with hypoketotic hypoglycemia, Reye syndrome-like symptoms, brain damage or death. The development of newborn screening (NBS) for MCAD deficiency has greatly improved outcome, but some patients still appear at risk for severe complications. We reviewed the outcome of patients identified with MCAD deficiency by the New York State NBS process to identify biochemical or genotypic markers which might predict outcome. METHOD: All eight NBS follow-up centers in New York State contributed the cases of MCAD deficiency diagnosed by newborn screen, who received diagnostic and follow-up care in their clinic. Data reviewed included gender, age, birthweight, initial NBS octanoylcarnitine level (C8) and C8/C2 ratio, follow-up C8 and hexanoylglycine, race/ethnicity, and presence of neonatal or later symptoms. RESULTS: We identified 53 cases of MCAD deficiency. More than one quarter of patients had a post-neonatal symptomatic admission (predominantly lethargy associated with an intercurrent illness). No genotype or C8 level was protective for neonatal or later symptoms. There was a relationship between initial C8 level or C8/C2 ratio and occurrence of later symptoms (7.3 micromol/L in the asymptomatic vs. 19.1 micromol/L in the symptomatic, p<0.0002 for C8, and 0.26 vs. 0.6, respectively, for C8/C2 ratio, p<0.012). Four infants had initial C8 level >30 micromol/L; these infants had a high rate of symptomatic or multiple symptomatic episodes or a history of sibling death from "SIDS", and typically had deletion, nonsense or splice sites mutations. Infants having a history of a symptomatic episode were more likely to have higher initial C8 on NBS and a genotype predicted to strongly affect protein function. In our ethnically diverse group of patients, the c.985A>G mutation was rarely found in non-Caucasians. DISCUSSION: No genotype or metabolite profile is protective from symptoms. The strong relationship between initial C8 level and outcome suggests that in at least some cases neonates having high initial C8 levels may be demonstrating an increased susceptibility to catabolic stress, and may merit additional precautions. Our data also suggest that these infants are more likely to carry severe mutations including homozygosity for the common mutation, deletions, nonsense or splice site mutations. The reports of significant lethargy or hypoglycemia during intercurrent illness in over one quarter of cases even when early medical intervention is recommended (and even when initial C8 is not profoundly elevated) underscores the importance of continued vigilance to prevent stressful fasting in this disorder.


Subject(s)
Acyl-CoA Dehydrogenases/deficiency , Acyl-CoA Dehydrogenases/genetics , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/physiopathology , Neonatal Screening/methods , Carnitine/analogs & derivatives , Carnitine/blood , Fatty Acids/metabolism , Female , Genotype , Humans , Infant, Newborn , Male , Metabolism, Inborn Errors/genetics , Mutation , New York , Phenotype , Prognosis
3.
Front Biosci ; 11: 1854-60, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16368561

ABSTRACT

While the 'original' bronchopulmonary dysplasia (BPD) was attributed to the iatrogenic effects of oxygen and barotrauma on the preterm lung, analyses of the 'new' BPD suggests that these environmental effects may contribute to arrested pulmonary development, and that there may also be genetic foundations for the susceptibility to BPD. Twinning, family and population studies implicate heritable factors in the evolution of BPD. The candidate genes examined for their potential role in BPD include surfactant apoprotein and inflammatory genes. With the identification and mapping of single nucleotide polymorphisms (SNPs), an explosion of testing for these genetic components that may contribute to a number of complex, multigenic disease conditions-including BPD-have been initiated. Sophisticated multiplex analyses are now available to link candidate SNPs to conditions such as BPD. However, there continues to be wide variation in the expression of BPD throughout neonatal units. Differentiating the effects caused by environmental and environmental-genetic interactions from isolated genetic etiologies is still problematic and will require carefully designed genetic analyses of preterm infant groups and their families.


Subject(s)
Bronchopulmonary Dysplasia/genetics , Genetic Predisposition to Disease , Alleles , Apoproteins/metabolism , Diseases in Twins , Evolution, Molecular , Gestational Age , Humans , Infant, Newborn , Infant, Premature , Inflammation , Linkage Disequilibrium , Lung/pathology , Models, Biological , Models, Genetic , Polymorphism, Single Nucleotide , Respiratory Distress Syndrome, Newborn/genetics , Risk , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...