Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Am Chem Soc ; 143(30): 11679-11689, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34284578

ABSTRACT

Strategies to improve stretchability of polymer semiconductors, such as introducing flexible conjugation-breakers or adding flexible blocks, usually result in degraded electrical properties. In this work, we propose a concept to address this limitation, by introducing conjugated rigid fused-rings with optimized bulky side groups and maintaining a conjugated polymer backbone. Specifically, we investigated two classes of rigid fused-ring systems, namely, benzene-substituted dibenzothiopheno[6,5-b:6',5'-f]thieno[3,2-b]thiophene (Ph-DBTTT) and indacenodithiophene (IDT) systems, and identified molecules displaying optimized electrical and mechanical properties. In the IDT system, the polymer PIDT-3T-OC12-10% showed promising electrical and mechanical properties. In fully stretchable transistors, the polymer PIDT-3T-OC12-10% showed a mobility of 0.27 cm2 V-1 s-1 at 75% strain and maintained its mobility after being subjected to hundreds of stretching-releasing cycles at 25% strain. Our results underscore the intimate correlation between chemical structures, mechanical properties, and charge carrier mobility for polymer semiconductors. Our described molecular design approach will help to expedite the next generation of intrinsically stretchable high-performance polymer semiconductors.

3.
Sci Adv ; 7(23)2021 06.
Article in English | MEDLINE | ID: mdl-34088675

ABSTRACT

Skin-like health care patches (SHPs) are next-generation health care gadgets that will enable seamless monitoring of biological signals in daily life. Skin-conformable sensors and a stretchable display are critical for the development of standalone SHPs that provide real-time information while alleviating privacy concerns related to wireless data transmission. However, the production of stretchable wearable displays with sufficient pixels to display this information remains challenging. Here, we report a standalone organic SHP that provides real-time heart rate information. The 15-µm-thick SHP comprises a stretchable organic light-emitting diode display and stretchable organic photoplethysmography (PPG) heart rate sensor on all-elastomer substrate and operates stably under 30% strain using a combination of stress relief layers and deformable micro-cracked interconnects that reduce the mechanical stress on the active optoelectronic components. This approach provides a rational strategy for high-resolution stretchable displays, enabling the production of ideal platforms for next-generation wearable health care electronics.

4.
J Phys Chem B ; 117(49): 15675-83, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-23977966

ABSTRACT

An analytic model for the slowing down of polymer chain diffusion in nanocomposites attributable to excluded volume effects is presented. The nanocomposite is modeled as an ensemble of cylinders through which the polymer chains diffuse. The reduction of polymer diffusion in each cylinder is equated with the reduction of diffusion for a sphere through a cylinder. The distribution of cylinder diameters within the ensemble is determined from statistical mechanical theories based on the packing of spherical particles. For low loadings of spherical particles in nanocomposites, this model results in a master curve for the reduced diffusion coefficient. With no adjustable parameters, the model agrees with recent data for tracer diffusion measurements in polymer nanocomposites at low loading.

5.
ACS Nano ; 6(2): 1578-88, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22283716

ABSTRACT

In this paper, polymer nanocomposite films containing gold nanorods (AuNRs) and poly(2-vinyl pyridine) (P2VP) have been investigated for their structure-optical property relationship. Using transmission electron microscopy (TEM), the assembly of AuNRs (7.9 nm × 28.4 nm) grafted with a P2VP brush in P2VP films is examined as a function of the AuNR volume fraction Ø(AuNRs) and film thickness h. For h ∼ 40 nm, AuNRs are confined to align parallel to the film and uniformly dispersed at low Ø(AuNRs). Upon increasing Ø(AuNRs), nanorods form discrete aggregates containing mainly side-by-side arrays due to depletion-attraction forces. For Ø(AuNRs) = 2.7%, AuNRs assemble into a 2D network where the discrete aggregates are connected by end-to-end linked nanorods. As Ø(AuNRs) further increases, the polymer-rich regions of the network fill in with nanorods and rod overlap is observed. Monte Carlo simulations capture the experimentally observed morphologies. The effect of film thickness is investigated at Ø(AuNRs) = 2.7%, where thicker films (40 and 70 nm) show a dense array of percolated nanorods and thinner films (20 nm) exhibit mainly isolated nanorods. Using Rutherford backscattering spectrometry (RBS), the AuNRs are observed to segregate near the substrate during spin-casting. Optically, the longitudinal surface plasmon resonance (LSPR) peaks are correlated with the local orientation of the AuNRs, where side-by-side and end-to-end alignments induce blue and red shifts, respectively. The LSPR undergoes a red shift up to 51 nm as Ø(AuNRs) increases from 1.6 to 2.7%. These studies indicate that the optical properties of polymer nanocomposite films containing gold nanorods can be fine-tuned by changing Ø(AuNRs) and h. These results are broadly applicable and provide guidelines for dispersing other functional nanoparticles, such as quantum dots and carbon nanotubes.

SELECTION OF CITATIONS
SEARCH DETAIL
...