Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Magnes Res ; 35(1): 1-10, 2022 01 01.
Article in English | MEDLINE | ID: mdl-36214549

ABSTRACT

In the present study, we investigated whether magnesium sulphate activates the L-arginine/NO/cGMP pathway and elicits peripheral antinociception. The male Swiss mice paw pressure test was performed with hyperalgesia induced by intraplantar injection of prostaglandin E2. All drugs were administered locally into the right hind paw of animals. Magnesium sulphate (20, 40, 80 and 160 µg/paw) induced an antinociceptive effect. The dose of 80 µg/paw elicited a local antinociceptive effect that was antagonized by the non-selective NOS inhibitor, L-NOArg, and by the selective neuronal NOS inhibitor, L-NPA. The inhibitors, L-NIO and L-NIL, selectively inhibited endothelial and inducible NOS, respectively, but were ineffective regarding peripheral magnesium sulphate injection. The soluble guanylyl cyclase inhibitor, ODQ, blocked the action of magnesium sulphate, and the cGMP-phosphodiesterase inhibitor, zaprinast, enhanced the antinociceptive effects of intermediate dose of magnesium sulphate. Our results suggest that magnesium sulphate stimulates the NO/cGMP pathway via neuronal NO synthase to induce peripheral antinociceptive effects.


Subject(s)
Dinoprostone , Magnesium Sulfate , Analgesics/pharmacology , Animals , Arginine/metabolism , Cyclic GMP/metabolism , Dinoprostone/adverse effects , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Magnesium Sulfate/pharmacology , Male , Mice , Nitric Oxide , Nitroarginine , Phosphodiesterase Inhibitors/pharmacology , Soluble Guanylyl Cyclase/antagonists & inhibitors
2.
Eur J Pharmacol ; 608(1-3): 23-7, 2009 Apr 17.
Article in English | MEDLINE | ID: mdl-19236861

ABSTRACT

Xylazine is an alpha(2)-adrenoceptor agonist extensively used in veterinary and animal experimentation. Evidence exists that alpha(2)-adrenoceptor agonists can activate opioid receptors via endogenous opioid release. Considering this idea and the multiple alpha(2) subtypes currently known (alpha(2A), alpha(2B), alpha(2C) and alpha(2D)), the aim of this study was to investigate which alpha(2) receptor subtype mediates xylazine-induced peripheral antinociception and possible opioid receptor and endogenous opioid involvement. The rat pressure test was used; the hyperalgesia was induced by intraplantar injection of prostaglandin E(2) (2 microg). Xylazine was administered locally (25, 50 and 100 microg) into the right hind paw of Wistar rat alone and after either alpha(2)-adrenoceptor antagonist yohimbine (5, 10 and 20 microg/paw), the alpha(2) antagonists to alpha(2A), alpha(2B), alpha(2C) and alpha(2D) subtypes (BRL 44 480, imiloxan, rauwolscine and RX 821002; 20 microg/paw, respectively) the opioid receptor antagonist naloxone (12.5, 25 and 50 microg) and the enkephalinase inhibitor bestatin (400 microg/paw). Intraplantar injection of xylazine (50 and 100 microg) induced peripheral antinociception; however, a dose of 25 microg/paw did not significantly reduce the hyperalgesic effect. Yohimbine, rauwolscine and naloxone prevented action of xylazine 100 microg/paw. BRL 44 480, imiloxan and RX 821002 were ineffective in blocking xylazine antinociception. Bestatin (400 microg/paw) potentiated the antinociceptive effect of xylazine 25 microg/paw. The present results provide evidence that the peripheral antinociceptive effect of xylazine probably results from activation of alpha(2C)-adrenoceptors and also by the release of endogenous opioids that act on their receptors.


Subject(s)
Adrenergic alpha-2 Receptor Agonists , Adrenergic alpha-2 Receptor Antagonists , Opioid Peptides/metabolism , Pain/prevention & control , Xylazine/pharmacology , Analgesics/pharmacology , Animals , Dinoprostone/pharmacology , Dose-Response Relationship, Drug , Hyperalgesia/chemically induced , Idazoxan/analogs & derivatives , Idazoxan/pharmacology , Imidazoles/pharmacology , Leucine/analogs & derivatives , Leucine/pharmacology , Male , Naloxone/pharmacology , Pain/chemically induced , Pain/metabolism , Pain Measurement/drug effects , Rats , Rats, Wistar , Yohimbine/administration & dosage , Yohimbine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...